462 research outputs found
A Density-Equalizing Mapping Analysis of the Global Research Architecture
Bacterial meningitis is caused by a variety of pathogens and displays an
important public health threat all over the world. Despite the necessity to
develop customized public health-related research projects, a thorough study
of global meningitis research is not present, so far. Therefore, the aim of
this study was a combined density-equalizing and scientometric study. To
evaluate the scientific efforts of bibliometric methods, density-equalizing
algorithms and large-scale data analysis of the Web of Science were applied in
the period between 1900 and 2007. From this, 7998 publications on bacterial
meningitis have been found. With a number of 2698, most publications have been
written by U.S. authors, followed by the UK (912), Germany (749) and France
(620). This dominance can also be shown in the international cooperation. The
specific citation analyses reveal that the nation with the highest average
citation rate (citations per publications) was Norway (26.36), followed by
Finland (24.16) and the U.S. (24.06). This study illustrates the architecture
of global research on bacterial meningitis and points to the need for
customized research programs with a focus on local public health issues in
countries with a low development index, but high incidences, to target this
global public health problem
Anything You Can Do, You Can Do Better: Neural Substrates of Incentive-Based Performance Enhancement
Performance-based pay schemes in many organizations share the fundamental assumption that the performance level for a given task will increase as a function of the amount of incentive provided. Consistent with this notion, psychological studies have demonstrated that expectations of reward can improve performance on a plethora of different cognitive and physical tasks, ranging from problem solving to the voluntary regulation of heart rate. However, much less is understood about the neural mechanisms of incentivized performance enhancement. In particular, it is still an open question how brain areas that encode expectations about reward are able to translate incentives into improved performance across fundamentally different cognitive and physical task requirements
Adiposity related brain plasticity induced by bariatric surgery
Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain’s homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning
The politicisation of evaluation: constructing and contesting EU policy performance
Although systematic policy evaluation has been conducted for decades and has been growing strongly within the European Union (EU) institutions and in the member states, it remains largely underexplored in political science literatures. Extant work in political science and public policy typically focuses on elements such as agenda setting, policy shaping, decision making, or implementation rather than evaluation. Although individual pieces of research on evaluation in the EU have started to emerge, most often regarding policy “effectiveness” (one criterion among many in evaluation), a more structured approach is currently missing. This special issue aims to address this gap in political science by focusing on four key focal points: evaluation institutions (including rules and cultures), evaluation actors and interests (including competencies, power, roles and tasks), evaluation design (including research methods and theories, and their impact on policy design and legislation), and finally, evaluation purpose and use (including the relationships between discourse and scientific evidence, political attitudes and strategic use). The special issue considers how each of these elements contributes to an evolving governance system in the EU, where evaluation is playing an increasingly important role in decision making
Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations
The ability to respond flexibly to an ever-changing environment relies on the orbitofrontal cortex (OFC). However, how the OFC associates sensory information with predicted outcomes to enable flexible sensory learning in humans remains elusive. Here, we combine a probabilistic tactile reversal learning task with functional magnetic resonance imaging (fMRI) to investigate how lateral OFC (lOFC) interacts with the primary somatosensory cortex (S1) to guide flexible tactile learning in humans. fMRI results reveal that lOFC and S1 exhibit distinct task-dependent engagement: while the lOFC responds transiently to unexpected outcomes immediately following reversals, S1 is persistently engaged during re-learning. Unlike the contralateral stimulus-selective S1, activity in ipsilateral S1 mirrors the outcomes of behavior during re-learning, closely related to top-down signals from lOFC. These findings suggest that lOFC contributes to teaching signals to dynamically update representations in sensory areas, which implement computations critical for adaptive behavior
Specific-heat, magnetic-susceptibility and transport-properties of polycrystalline CeInAu and CeInAu2
Intermittent compared to continuous real-time fMRI neurofeedback boosts control of amygdala activity
- …
