169 research outputs found
TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence
Scalar and vector Slepian functions, spherical signal estimation and spectral analysis
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded.
In the geosciences we may be interested in spectrally modeling a time series
defined only on a certain interval, or we may want to characterize a specific
geographical area observed using an effectively bandlimited measurement device.
It is clear that analyzing and representing scientific data of this kind will
be facilitated if a basis of functions can be found that are "spatiospectrally"
concentrated, i.e. "localized" in both domains at the same time. Here, we give
a theoretical overview of one particular approach to this "concentration"
problem, as originally proposed for time series by Slepian and coworkers, in
the 1960s. We show how this framework leads to practical algorithms and
statistically performant methods for the analysis of signals and their power
spectra in one and two dimensions, and, particularly for applications in the
geosciences, for scalar and vectorial signals defined on the surface of a unit
sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics,
edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be
published by Springer Verlag. This is a slightly modified but expanded
version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the
Handbook, when it was called: Slepian functions and their use in signal
estimation and spectral analysi
Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions
Background:
Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions.
Methods:
These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies.
Results:
Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level.
Conclusions:
These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible
Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis
Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/flmice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL
Calcium Uptake and Proton Transport by Acidocalcisomes of Toxoplasma gondii
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to humans. They possess an acidic matrix that contains several cations bound to phosphates, which are mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. Calcium uptake occurs through a Ca2+/H+ countertransporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. We report the purification and characterization of an acidocalcisome fraction from T. gondii tachyzoites after subcellular fractionation and further discontinuous iodixanol gradient purification. Proton and calcium transport activities in the fraction were characterized by fluorescence microscopy and spectrophotometric methods using acridine orange and arsenazo III, respectively. This work will facilitate the understanding of the function of acidocalcisomes in Apicomplexan parasites, as we can now isolate highly purified fractions that could be used for proteomic analysis to find proteins that may clarify the biogenesis of these organelles
Emotional Dynamics in the Development of Early Adolescent Psychopathology: A One-Year Longitudinal Study
This study examined the role of the level and variability of happiness, anger, anxiety, and sadness in the development of adolescent-reported anxiety disorder symptoms, depressive symptoms, and aggressive behavior in 452 adolescents (250 male) followed from age 13 to 14. Level and between-day variability of emotions were assessed through adolescent report at 3-month intervals across a 1 year period. Level and variability of the four emotions contributed to changes in anxiety disorder and depressive symptoms more consistently than to changes in aggressive behavior. All four emotions were predictive of changes in internalizing problems, while anger played the most prominent role in the development of aggressive behavior. Variability of emotions contributed to changes in anxiety disorder symptoms, while heightened levels of negative emotions and diminished happiness contributed to changes in depression. Results suggested somewhat stronger effects of negative affect on aggressive behavior for females than for males. Results underscore the role of emotion dysregulation in the development of psychopathology
Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): , doi:10.1029/2006GB002751.We use an inverse method to estimate the global-scale pattern of the air-sea flux of natural CO2, i.e., the component of the CO2 flux due to the natural carbon cycle that already existed in preindustrial times, on the basis of ocean interior observations of dissolved inorganic carbon (DIC) and other tracers, from which we estimate ΔC gasex , i.e., the component of the observed DIC that is due to the gas exchange of natural CO2. We employ a suite of 10 different Ocean General Circulation Models (OGCMs) to quantify the error arising from uncertainties in the modeled transport required to link the interior ocean observations to the surface fluxes. The results from the contributing OGCMs are weighted using a model skill score based on a comparison of each model's simulated natural radiocarbon with observations. We find a pattern of air-sea flux of natural CO2 characterized by outgassing in the Southern Ocean between 44°S and 59°S, vigorous uptake at midlatitudes of both hemispheres, and strong outgassing in the tropics. In the Northern Hemisphere and the tropics, the inverse estimates generally agree closely with the natural CO2 flux results from forward simulations of coupled OGCM-biogeochemistry models undertaken as part of the second phase of the Ocean Carbon Model Intercomparison Project (OCMIP-2). The OCMIP-2 simulations find far less air-sea exchange than the inversion south of 20°S, but more recent forward OGCM studies are in better agreement with the inverse estimates in the Southern Hemisphere. The strong source and sink pattern south of 20°S was not apparent in an earlier inversion study, because the choice of region boundaries led to a partial cancellation of the sources and sinks. We show that the inversely estimated flux pattern is clearly traceable to gradients in the observed ΔC gasex , and that it is relatively insensitive to the choice of OGCM or potential biases in ΔC gasex . Our inverse estimates imply a southward interhemispheric transport of 0.31 ± 0.02 Pg C yr−1, most of which occurs in the Atlantic. This is considerably smaller than the 1 Pg C yr−1 of Northern Hemisphere uptake that has been inferred from atmospheric CO2 observations during the 1980s and 1990s, which supports the hypothesis of a Northern Hemisphere terrestrial sink.This
research was financially supported by the National Aeronautics and Space
Administration under grant NAG5-12528. N. G. also acknowledges support
by the National Science Foundation (OCE-0137274). Climate and Environmental
Physics, Bern, acknowledges support by the European Union
through the Integrated Project CarboOcean and the Swiss National Science
Foundation
Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity
Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2)
- …