287 research outputs found

    A dissimilarity-based approach for Classification

    Get PDF
    The Nearest Neighbor classifier has shown to be a powerful tool for multiclass classification. In this note we explore both theoretical properties and empirical behavior of a variant of such method, in which the Nearest Neighbor rule is applied after selecting a set of so-called prototypes, whose cardinality is fixed in advance, by minimizing the empirical mis-classification cost. With this we alleviate the two serious drawbacks of the Nearest Neighbor method: high storage requirements and time-consuming queries. The problem is shown to be NP-Hard. Mixed Integer Programming (MIP) programs are formulated, theoretically compared and solved by a standard MIP solver for problem instances of small size. Large sized problem instances are solved by a metaheuristic yielding good classification rules in reasonable time.operations research and management science;

    Breakdown points of Fermat-Weber problems under gauge distances

    Full text link
    We compute the robustness of Fermat--Weber points with respect to any finite gauge. We show a breakdown point of 1/(1+σ)1/(1+\sigma) where σ\sigma is the asymmetry measure of the gauge. We obtain quantitative results indicating how far a corrupted Fermat--Weber point can lie from the true value in terms of the original sample and the size of the corrupted part. If the distance from the true value depends only on the original sample, then we call the gauge 'uniformly robust'. We show that polyhedral gauges are uniformly robust, but locally strictly convex norms are not.Comment: 19 pages, 4 figure

    Optimal expected-distance separating halfspace

    Get PDF
    One recently proposed criterion to separate two datasets in discriminant analysis, is to use a hyperplane which minimises the sum of distances to it from all the misclassified data points. Here all distances are supposed to be measured by way of some fixed norm, while misclassification means lying on the wrong side of the hyperplane, or rather in the wrong halfspace. In this paper we study the problem of determining such an optimal halfspace when points are distributed according to an arbitrary random vector X in Rd,. In the unconstrained case in dimension d, we prove that any optimal separating halfspace always balances the misclassified points. Moreover, under polyhedrality assumptions on the support of X, there always exists an optimal separating halfspace passing through d affinely independent points. It follows that the problem is polynomially solvable in fixed dimension by an algorithm of O(n d+1) when the support of X consists of n points. All these results are strengthened in the one-dimensional case, yielding an algorithm with complexity linear in the cardinality of the support of X. If a different norm is used for each data set in order to measure distances to the hyperplane, or if all distances are measured by a fixed gauge, the balancing property still holds, and we show that, under polyhedrality assumptions on the support of X, there always exists an optimal separating halfspace passing through d − 1 affinely independent data points. These results extend in a natural way when we allow constraints modeling that certain points are forced to be correctly classified.Ministerio de Ciencia y Tecnologí

    Location and design of a competitive facility for profit maximisation

    Get PDF
    A single facility has to be located in competition with fixed existing facilities of similar type. Demand is supposed to be concentrated at a finite number of points, and consumers patronise the facility to which they are attracted most. Attraction is expressed by some function of the quality of the facility and its distance to demand. For existing facilities quality is fixed, while quality of the new facility may be freely chosen at known costs. The total demand captured by the new facility generates income. The question is to find that location and quality for the new facility which maximises the resulting profits. It is shown that this problem is well posed as soon as consumers are novelty oriented, i.e. attraction ties are resolved in favor of the new facility. Solution of the problem then may be reduced to a bicriterion maxcovering-minquantile problem for which solution methods are known. In the planar case with Euclidean distances and a variety of attraction functions this leads to a finite algorithm polynomial in the number of consumers, whereas, for more general instances, the search of a maximal profit solution is reduced to solving a series of small-scale nonlinear optimisation problems. Alternative tie-resolution rules are finally shown to result in ill-posed problems.Dirección General de Enseñanza Superio

    Alternating local search based VNS for linear classification

    Get PDF
    We consider the linear classification method consisting of separating two sets of points in d-space by a hyperplane. We wish to determine the hyperplane which minimises the sum of distances from all misclassified points to the hyperplane. To this end two local descent methods are developed, one grid-based and one optimisation-theory based, and are embedded in several ways into a VNS metaheuristic scheme. Computational results show these approaches to be complementary, leading to a single hybrid VNS strategy which combines both approaches to exploit the strong points of each. Extensive computational tests show that the resulting method performs well

    Improved results for the k-centrum straight-line location problem

    Get PDF
    The k-Centrum problem consists in finding a point that minimises the sum of the distances to the k farthest points out of a set of given points. It encloses as particular cases to two of the most known problems in Location Analysis: the center, also named as the minimum enclosing circle, and the median. In this paper the k-Centrum criteria is applied to obtaining a straight line-shaped facility. A reduced finite dominant set is determined and an algorithm with lower complexity than the previous one obtained.Ministerio de Ciencia y Tecnologí

    The continuous p-centre problem: An investigation into variable neighbourhood search with memory

    Get PDF
    A VNS-based heuristic using both a facility as well as a customer type neighbourhood structure is proposed to solve the p-centre problem in the continuous space. Simple but effective enhancements to the original Elzinga-Hearn algorithm as well as a powerful ‘locate-allocate’ local search used within VNS are proposed. In addition, efficient implementations in both neighbourhood structures are presented. A learning scheme is also embedded into the search to produce a new variant of VNS that uses memory. The effect of incorporating strong intensification within the local search via a VND type structure is also explored with interesting results. Empirical results, based on several existing data set (TSP-Lib) with various values of p, show that the proposed VNS implementations outperform both a multi-start heuristic and the discrete-based optimal approach that use the same local search

    A case of plagiarism: Dănuţ Marcu

    Full text link
    corecore