
A dissimilarity-based approach for Classification ∗

Emilio Carrizosa

Universidad de Sevilla (Spain). ecarrizosa@us.es
Belén Mart́ın-Barragán

Universidad de Sevilla (Spain). belmart@us.es
Frank Plastria

Vrije Universiteit Brussel (Belgium). Frank.Plastria@vub.ac.be
Dolores Romero Morales

University of Oxford (United Kingdom). dolores.romero-morales@sbs.ox.ac.uk

METEOR Research Memorandum RM/02/027. Version October, 2005

Abstract
The Nearest Neighbor classifier has shown to be a powerful tool for multiclass

classification. In this note we explore both theoretical properties and empirical
behavior of a variant of such method, in which the Nearest Neighbor rule is applied
after selecting a set of so-called prototypes, whose cardinality is fixed in advance,
by minimizing the empirical misclassification cost. With this we alleviate the two
serious drawbacks of the Nearest Neighbor method: high storage requirements and
time-consuming queries.

The problem is shown to be NP-Hard. Mixed Integer Programming (MIP)
programs are formulated, theoretically compared and solved by a standard MIP
solver for problem instances of small size. Large sized problem instances are solved
by a metaheuristic yielding good classification rules in reasonable time.

Keywords: Classification, Optimal Prototype Subset, Nearest Neighbor, Dissimilarities,
Integer Programming, Variable Neighborhood Search.

1 Introduction

In a Classification problem, one has a database with objects of |C| different classes, and
one wants to derive a classification rule, i.e., a procedure which labels every future entry
as member of one of the |C| existing classes.

∗This research is supported by grant MTM2005-09362-C03-01 of Ministerio de Educación y Ciencia,
Spain.
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Roughly speaking, classification procedures can be divided into two types: parametric
and non-parametric. Parametric procedures assume that each object from class c ∈ C is
associated with a random vector with known distribution, perhaps up to some parameters,
to be estimated, (e.g. data are multivariate normal vectors, with unknown mean µc and
covariance matrix Σc), and use the machinery of Statistics as main technique, see e.g.
[31].

For complex databases, with no evident distributional assumptions on the data (typ-
ically the case of databases with a mixture of quantitative and qualitative variables),
non-parametric methods, as the one described in this paper, are needed.

In recent years there has been an increasing interest in deriving (non-parametric)
classification rules via Mathematical Programming. Most of such methods require, for
each object i, a vector vi of n numerical variables. In particular this assumes variables
to be ratio-scaled, and not nominal or ordinal. Moreover, no blanks are allowed, which
excludes its direct use for cases in which some measures are missing or simply do not
apply. See e.g. Cristianini and Shawe-Taylor [10], Freed and Glover [14], Gehrlein [16],
Gochet et al. [18] and Mangasarian [30].

A more flexible methodology, which just requires the knowledge of a metric (or, as
discussed in Section 2.1, a dissimilarity), is the Nearest Neighbor (NN) method [9, 11, 12,
23], which provides, as documented e.g. in [25, 33], excellent results.

In Nearest Neighbor methods, for each new entry i, the distances (or dissimilarities)
d(i, j) to some objects j in the database (called prototypes) are computed, and i is classified
according to such set of distances. In particular, in the classical NN, [9], all objects are
prototypes, and i is classified as member of class c∗ to which its closest prototype j∗

(satisfying d(i, j∗) ≤ d(i, j)∀j) belongs.
A generalization of the NN is the k-NN, e.g. [12], which classifies each i in the class

most frequently found in the set of k prototypes closest to i. In particular, the NN is the
k-NN for k = 1.

These classification rules, however, require distances to be calculated to all data in
the database for each new entry, involving high storage and time resources, making it
impractical to perform on-line queries. For these reasons, several variants have been
proposed in the last three decades, see e.g. [3, 4, 11, 12, 17, 22, 27, 28] and the references
therein.

Most of such proposals differ in the way they attempt to heuristically provide a set
of prototypes of small size and low misclassification cost, see [4]. An extreme case is the
Condensed Nearest Neighbor (CNN) rule, [22], in which the full database I is replaced
by a so-called minimal consistent subset, namely, a subset S of records with minimum
cardinality such that, if the NN is used with S (instead of I) as set of prototypes, all
points in I are classified in the correct classes.

Since the size of such a minimal consistent subset is unpredictable and can still be
too large, several procedures have been suggested to reduce its size. Although such
procedures do not necessarily classify correctly all the items in the database, (i.e., they
are not consistent), they may have a similar or even better behavior to predict class
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membership on future entries because they may reduce the possible overfitting suffered
by the CNN rule, see e.g. [7, 29].

In [4] a number of procedures of this type are classified according to three different
issues:

• The prototype design: the prototypes can be either selected from I or constructed
(e.g. by considering centroids, in case of numerical variables)

• The use of labels, i.e., whether the class labels of the sample data are used or not
to select/construct the prototypes

• The control on the size of the set of prototypes, i.e., whether the number of proto-
types is specified in advance or is automatically determined by the algorithm.

In this paper we propose a new model, in which a set of prototypes of pre-specified
cardinality p is sought, minimizing an empirical misclassification cost.

With respect to the prototype design, we assume that prototypes are to be chosen
from a given set, which can be different from or equal to the set of available data. Hence,
we give the highest freedom in this issue. Labels from sample data are used, thus all
existing information is taken into account. Finally, the user has full control of the number
of prototypes, and therefore of the query times, which are critical when the computation
of dissimilarities is very costly. The effort needed to classify a new entry is directly
proportional to p, and may therefore serve in practice to guide the choice of p.

For simplicity we restrict ourselves to the classification rule based on the closest dis-
tance, and hence it can be seen as a variant of the NN rule. However, the results developed
in the paper extend directly to the case in which the k closest distances, k ≥ 1, are con-
sidered in the classification procedure, leading to a variant of the k-NN method.

The remainder of the paper is structured as follows. The mathematical model is intro-
duced in Section 2, showing that it is NP-Hard. In Section 3, two Integer Programming
formulations are proposed and theoretically compared. Numerical results are given in Sec-
tion 4. It follows from this experience that, when the optimization problems are solved
exactly (with a standard MIP solver) the behavior of the classification rule is promising,
but with enormous preprocessing times. For this reason, a heuristic procedure is also
proposed, and its quality and speed is explored. In particular, this shows that the rules
obtained with this heuristic procedure have similar behavior on testing samples as the
optimal ones. Some concluding remarks and possible extensions are given in Section 5.

2 The model

2.1 Classification rules

We now describe our framework for classifying objects and introduce the notation used
throughout the paper.
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A key concept in NN-based classification methods is the concept of distance, or, more
generally, dissimilarity.

By a dissimilarity on a set J we mean a function d : J × J −→ IR∪{+∞}, satisfying

d(u, v) ≥ 0, ∀u, v ∈ J (1)

d(u, u) = 0, ∀u ∈ J. (2)

When the set J is (a subset of) the n-dimensional space IRn, the most popular dis-
similarities are those derived from metrics, such as the (weighted) Euclidean or the Ma-
halanobis distance. See [34, 35] for further details, extensions and modelling aspects.

However, not all interesting dissimilarity measures correspond to metrics. A typical
example, described e.g. in [24], corresponds to the case in which J is a finite set of the
n-dimensional space, but for some objects some of its coordinates cannot be used (because
in practice they are missing, or strongly suspected to be wrong). In that case, denoting,
for each u ∈ IRn, by D(u) the set of coordinates of u which are allowed to be used, we can
extend the definition of Euclidean distance to the dissimilarity (not necessarily metric)

d(u, v) =

{ (∑
j∈D(u)∩D(v)

ωj

|D(u)∩D(v)| (uj − vj)
2
)1/2

, if D(u) ∩D(v) 6= ∅
+∞, else,

(3)

for given weights ω1, . . . , ωn.
Natural definitions of dissimilarities for sets J for which a metric is neither feasible

nor recommended abound in the literature. The reader is referred e.g. to Chapter 1 of
[24], where some dissimilarities are defined for sets J of objects for which n variables are
measured, some of quantitative type, some ordinal or some nominal, and blanks, as in
(3), exist. Other methods for deriving dissimilarities can be found in the literature of
protein/amino-acid alignment in Bioinformatics, [1, 2, 32], or in the literature of Fuzzy
Analysis, usually as the complement to 1 of a fuzzy similarity relation, [39]. See e.g. [38],
where the set J is a set of portraits of people from three different families.

Let J be a finite set of objects, with a dissimilarity d defined on it. The set J is
partitioned into |C| classes. A classification rule is a function ϕ : J −→ C, which
associates with each object s ∈ J a class.

In this paper, the family of classification rules under consideration is restricted to
those based on selecting prototypes for the different classes in C as follows: For each class
c ∈ C, there exists a non-empty set Rc ⊂ J of candidates to be prototypes of class c. We
denote the full set of candidates as R and assume that the sets Rc produce a partition of
R, i.e.

⋃
c∈C Rc = R and Rc

⋂
Rc′ = ∅, c 6= c′.

Some non-empty S ⊂ R, the set of prototypes, is to be chosen. For a given S, we denote
by ϕS the S-based NN classification rule, namely, the classification rule which labels each
i ∈ J with the (known) label of the prototype in S closest (i.e., least dissimilar) to i. In
other words, if d(i, S ∩Rc) denotes

d(i, S ∩Rc) = min
j∈S∩Rc

d(i, j),
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then we define ϕS(i) as
ϕS(i) = arg min

c∈C
d(i, S ∩Rc), (4)

if such minimum is attained at a single c. In case of ties, a least-dissimilar c must be
chosen as ϕS(i). Details on tie-breaking rules are given in the next section.

2.2 Performance measure

For each s ∈ R, let c(s) ∈ C denote the class to which s belongs. In general, misclas-
sification errors, i.e., objects s with ϕS(s) 6= c(s), will exist. Moreover, since not all
misclassification errors are, in principle, equally important, we suppose given, for each
c, c′ ∈ C, a misclassification penalty r(c′|c) ≥ 0, associated with each object of class c
which is labelled as member of class c′. For the sake of convenience, we define r(c|c) = 0,
i.e., the cost of correct classification is set equal to zero.

A very particular but important case is obtained when all wrong classifications con-
tribute the same cost,

r(c′|c) =

{
rc, if c′ 6= c
0, lse,

(5)

where, for each c ∈ C, rc > 0. We will call this the uniform case. Moreover, when all rc

are equal, say, to unity, one obtains the binary case

r(c′|c) =

{
1, if c′ 6= c
0, else,

(6)

which simply leads to counting the number of misclassified objects, [30]. We stress that
our method accommodates cost structures more general than (6). This will be illustrated
in Section 4.6, in which a classifier is constructed for a cancer diagnosis problem, for
which, obviously, different misclassification types should imply different misclassification
costs.

As customary in distance-based classification methods, assignment rules should be
defined also in case of ties: assignment will be done to the least dissimilar prototype, and,
in case of ties, assignment will be done randomly or by some user-defined procedure.

In order to compute the cost associated with a classifier, we will use a worst-case
approach, mathematically formalized as follows. Since R is a finite set, we can sort its
labels, giving a strict total order ≺ on R. For each i ∈ J, let ≺i be the strict total order
on R yielding the assignment for i : For any j1, j2 ∈ R, j1 ≺i j2 iff one of the following
conditions holds:

• d(i, j1) < d(i, j2)

• d(i, j1) = d(i, j2), r(c(j1)|c(i)) > r(c(j2)|c(i))

• d(i, j1) = d(i, j2), r(c(j1)|c(i)) = r(c(j2)|c(i)), j1 ≺ j2.
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Since ≺i is a strict total order on R, it is also a strict total order on any non-empty S ⊂ R.
Hence, the set

{j ∈ S : no j′ ∈ S satisfies j′ ≺i j}
is a singleton, whose class will be ϕS(i). We may observe that this definition is consistent
with (4) and extends it to the case of ties in dissimilarities.

With this cost structure, the total cost πJ(S) within J of the S-based NN classification
rule ϕS is given by

πJ(S) =
∑
i∈J

r(ϕS(i)|c(i)),

which is proposed as performance measure of the classification rule.
The evaluation of πJ(·) implicitly requires complete knowledge of the member class of

each object in J . In practice, c(i) will be known only for objects in a set I ⊂ J, called the
training set. Hence, the definition of πJ is of limited use, since it cannot be calculated.
However, if we assume that the training set I has been obtained as result of a sampling
in J , (unbiased) estimators π̂J of πJ , can be used as surrogates. The reader is referred to
[8] for an introduction to sampling and statistical estimation strategies.

Indeed, suppose that I has been obtained after sampling in J, using a sampling design
such that, for any c ∈ C, any object i in class c is included in the sample with probability
pr(c) > 0. For instance, if the sample I is obtained according to a random sampling
without replacement of size s, then pr(c)is seen to be given by

pr(c) =
s

|J |
∀c ∈ C. (7)

On the other hand, if a so-called stratified random sampling is used, a random sample
without replacement Ic of size s(c) is drawn from each c ∈ C, yielding, [8],

pr(c) =
s(c)

|c|
.

In any case, an unbiased estimator for πJ(S) is the so-called Horwitz-Thompson estimator

π̂J(S), [37],

π̂J(S) =
∑
i∈I

r(ϕS(i)|c(i))
pr(c(i))

.

For the sake of readability we will assume hereafter that, as in (7), all probabilities

pr(c) are equal, thus π̂J(S) becomes proportional to the total cost πI(S) within the training
sample I,

πI(S) =
∑
i∈I

r(ϕS(i)|c(i)), (8)

called hereafter the empirical classification cost. It follows that, for the particular cost
structure given by (6), the empirical classification cost simply gives the number of mis-
classified objects in the training sample I.
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Given an integer p, |C| ≤ p ≤ |R|, our model consists in determining the classification
rule ϕS with minimal empirical cost, measured as (8), such that S is a subset of R, with
cardinality p, and at least one prototype from each class c is included, i.e. S ∩Rc 6= ∅, ∀c.
We will call such model the p-Prototypes Nearest Neighbor (p-PNN) model.

As a particular instance, taking R = I, i.e., admitting the full training set as candidates
to prototypes, the |I|-PNN rule is the usual NN rule.

The complexity of finding a p-PNN rule is addressed below.

2.3 Complexity

In this section we prove that finding a p-PNN rule is NP-Hard. Our proof shows that
the problem remains NP-Hard even when restricted to the particular case of two classes,
the set of candidates to prototypes coinciding with the training set, the dissimilarity is
a metric and the misclassification costs uniformly equal to one. We formalize this in the
following decision problem

PERFECT CLASSIFICATION: Given a number p and a finite set I, partitioned into
two subsets I1, I2 and equipped with a metric d, does there exist a subset S of I of
cardinality p, such that the corresponding classification rule classifies all elements of I
correctly?

Proposition 1 PERFECT CLASSIFICATION is an NP-Complete problem.

Proof. Our starting point is the following NP-Complete problem, [15]:
DOMINATING SET: Given a graph (V, E) and a positive number l ≤ |V |, does there

exist an l-dominating vertex set? An l-dominating vertex set is a subset V ′ ⊆ V with
|V ′| ≤ l and such that all vertices in V \ V ′ are adjacent to V ′.

For instance, consider the graph (V, E) depicted in Figure 1. The set {v4, v5, v6, v8} is
a 4-dominating vertex set for (V, S), whereas {v4, v5, v6} is not a 3-dominating vertex set,
since it contains no vertex adjacent to v9.

Given an instance of DOMINATING SET, we construct an instance of PERFECT
CLASSIFICATION as follows. Let I1 = V and I2 = {w} where w is an arbitrary object
not in V and p = l + 1. The dissimilarities are defined by the shortest path distances in
the extended graph (V ∪ {w}, E ∪ (V ×{w})) with edge lengths 2 on E and 3 on all new
edges. See in Figure 2 the extended graph for the graph (V, E) of Figure 1, where edges
of length 2 are plotted as continuous lines, and the edges of length 3 (those connecting
with w) are dashed.

Then for any set of prototypes S ⊆ R we have that:

• The object w is always correctly classified, because I2 is a singleton.

• For any v ∈ I1 = V only one of the following three possibilities for assignment may
arise:
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Figure 1: An example of graph (V, E)
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Figure 2: Extended graph for the graph (V, E) of Figure 1
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– if v ∈ S, it is assigned to itself since dissimilarity is then 0, while ∀v 6= w
d(v, w) > 0

– if v 6∈ S but adjacent to some v′ ∈ S ∩ V , it will be assigned to v′ since
d(v, v′) = 2, which is the minimal nonzero possibility for the dissimilarity

– if v 6∈ S and not adjacent to S ∩ V, it will be assigned to w since d(v, w) = 3,
while the dissimilarity to any prototype in V is at least 4.

Let us illustrate the reasoning with the graph of Figure 1 with S = {w, v4, v5, v6}
as set of prototypes. Since v5 ∈ S, we have that d(v5, v5) = 0 < 3 = d(v5, w); hence,
v5 is assigned to class I1, as is thus correctly classified. On the other hand, since v1 is
adjacent to v4 ∈ S, we have d(v1, v4) = 2 < 3 = d(v1, w), and thus v1 is correctly classified.
However, v9 is misclassified since

d(v9, v4) = 6 > 3 = d(v9, w)

d(v9, v5) = 6 > 3 = d(v9, w)

d(v9, v6) = 4 > 3 = d(v9, w),

and thus v9 is assigned to I2. Hence, such S is not a 4-dominating vertex set for the
extended graph, or, in other words, does not classify correctly all objects.

It follows that, in general, misclassification by S of an object is equivalent to being
vertex dominated by {w}. Hence, S ∩ V being an l-dominating set is equivalent to all
objects being correctly classified by S with |S| ≤ l + 1. Therefore, the desired result
follows. 2

From this we directly obtain the following corollary.

Corollary 2 Finding a p-PNN rule is NP-Hard.

In Section 3 we formulate as Integer Programs the problem of determining the classi-
fication rule ϕS with minimal empirical misclassification cost, measured as (8), both for
general misclassification penalties and also for the uniform case defined in (5).

3 Integer Programming formulations

3.1 General costs

For each i ∈ I, s ∈ R, let Ris denote the set of prototypes which are more preferred
(according to ≺i) than s,

Ris = {t ∈ R : t ≺i s}.

We define the following variables
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• xs ∈ {0, 1}, ∀s ∈ R
answering the question ‘Is candidate s chosen to be a prototype?’. Hence, a classi-
fication rule ϕS, as defined in (4), is identified by the vector of x such that

xs =

{
1, if s ∈ S
0, else

• yis ∈ [0, 1], ∀i ∈ I and s ∈ R
which will answer the assignment question for ‘Is s the prototype least dissimilar to
i?’. Note that although, in principle, these variables should be binary, the model
allows to consider them as continuously relaxed to lie between 0 and 1.

Since the misclassification cost for object i ∈ I belonging to the class c(i) is given by∑
s∈R

r(c(s)|c(i))yis,

it turns out that the empirical misclassification cost πI(S) of classification rule ϕS, as
defined in (4) is given by ∑

i∈I

∑
s∈R

r(c(s)|c(i))yis.

The problem consists in finding the set S ⊂ R with cardinality |S| = p (with p given)
containing at least one element in each class c, such that the empirical misclassification
cost is minimized. This yields the following (Mixed) Integer Programming formulation:

min
∑
i∈I

∑
s∈R

r(c(s)|c(i))yis

subject to (P1)∑
s∈Rc

xs ≥ 1 ∀c ∈ C (9)∑
s∈R xs = p (10)∑
s∈R yis = 1 ∀i ∈ I (11)

xs − yis ≤
∑

t∈Ris
xt ∀(i, s) ∈ I ×R (12)

yis ≤ xs ∀(i, s) ∈ I ×R (13)

xs ∈ {0, 1} ∀s ∈ R

yis ∈ [0, 1] ∀(i, s) ∈ I ×R.

Constraints (9) force each class to have at least one prototype and constraint (10)
says that we choose p prototypes in total. The constraints (11) and (13) ensure that
each object has a prototype and an object can only be assigned to a candidate chosen as
prototype.

Following [36], the constraints (12) ensure that an object is assigned to the least
dissimilar of the prototypes:
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If s is a prototype and there is no prototype preferred by i

Then i must be assigned to s

or equivalently

If xs = 1 and xt = 0, ∀t ∈ Ris

Then yis = 1

which, by using the methodology developed in Plastria [36], is expressed by the constraint

1− yis ≤
∑
t∈Ris

xt + (1− xs) ∀(i, s) ∈ I ×R,

yielding (12).

3.2 Uniform costs

Now we discuss in some detail the particular case in which the cost structure is given by
(5), because, as shown below, we can derive an alternative formulation with fewer variables
and constraints than (P1). The additional advantage of this formulation is, remarkably,
that its Linear Programming (LP) relaxation is at least as tight as the LP relaxation of
(P1).

Indeed, in this case, the objective of (P1) can be written as∑
i∈I

∑
s∈R

r(c(s)|c(i))yis =

=
∑
i∈I

∑
s∈Rc(i)

r(c(s)|c(i))yis +
∑
i∈I

∑
s 6∈Rc(i)

r(c(s)|c(i))yis

= 0 +
∑
i∈I

∑
s 6∈Rc(i)

r(c(s)|c(i))yis

=
∑
i∈I

rc(i)

∑
s∈R

yis −
∑
i∈I

rc(i)

∑
s∈Rc(i)

yis

=
∑
i∈I

rc(i) −
∑
i∈I

rc(i)

∑
s∈Rc(i)

yis.

Define, for each i ∈ I, the variable zi,

zi =
∑

s∈Rc(i)

yis,

which answers the (fuzzy) question ‘is object i correctly classified?’.
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With this, the objective at any feasible solution can be written as∑
i∈I

rc(i) −
∑
i∈I

rc(i)zi.

To guarantee that the variables zi answer the question above, the only thing that must
be specified is when zi must necessarily be 0. When zi is left free to choose, minimizing
the objective will push the choice zi = 1. The former is obtained by stating

If t /∈ Rc(i) is chosen as a prototype and no prototype in Rc(i) is preferred (according
to ≺i) than t

Then i ∈ I will not be correctly classified

or, for each t /∈ Rc(i) ,

If xt = 1 and xs = 0 (∀s ∈ Rc(i) ∩Rit)

Then zi = 0

which is expressed by the constraint

zi ≤ (1− xt) +
∑

s∈Rc(i)∩Rit

xs. (14)

Note that this constraint indeed expresses exactly the desired property even when zi is
continuously relaxed, see [36]. Thus, we may rewrite (P1) as

min
∑
i∈I

rc(i) −
∑
i∈I

rc(i)zi

subject to (P2)∑
s∈Rc

xs ≥ 1 ∀c ∈ C∑
s∈S xs = p

zi ≤ (1− xt) +
∑

s∈Rc(i)∩Rit
xs ∀i ∈ I, t /∈ Rc(i)

xs ∈ {0, 1} ∀s ∈ R

zi ∈ [0, 1] ∀i ∈ I.

Calling (LP1) and (LP2) the LP relaxations of (P1) and (P2), we may state

Proposition 3 (LP2) is at least as tight as (LP1).
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Proof. For the proof, see the Appendix. 2

Since the integer variables are the same in both models, the subproblems generated
when fixing some of these variables satisfy the same property. Therefore, if available, (P2)
is to be preferred when solving the problem by means of a Branch and Bound algorithm.

Note that the term
∑

i∈I rc(i) in (P2)’s objective is constant, and, since we are only
interested in optimal solutions, and not in the optimal objective value, it may be dropped.
Sign inversion then leads to the simpler objective

max
∑
i∈I

rc(i)zi

defining our model (P2′) subject to the same constraints as (P2) above.

Remark 4

The definition of variables above can also be used to model as Integer Problems other
variants of the NN. For instance, finding the consistent subset of minimal cardinality, i.e.,
Hart’s CNN-rule, [22], amounts to solving the optimization problem

min
∑
s∈S

xs

subject to (PCNN)∑
s∈Rc

xs ≥ 1 ∀c ∈ C

1 ≤ (1− xt) +
∑

s∈Rc(i)∩Rit
xs ∀i ∈ I, t /∈ Rc(i)

xs ∈ {0, 1} ∀s ∈ R.

4 Computational experience

4.1 Aims

By construction, the storage requirements and processing time of the p-PNN rule are
smaller than those of the standard NN rule. Our aim here is to compare empirically the
classification power of the p-PNN rule, for different values of p, against NN.

For the sake of completeness, we compare also p-PNN with other benchmark methods.
In particular, we have tested the performance of p-PNN against

• k-NN (‘kNN’ in the tables) for different values of k.

• Support Vector Machines (‘SVM’), [10], with linear kernel (‘Lin’), polynomial kernel
(‘Pol’) and radial bases function kernel (‘Rbf’).
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• Classification Trees, denoted here by ‘Cart’, [6], with and without pruning (‘TreeBest’
and ‘Tree’ respectively), as implemented in Matlab 6.5 Statistics Toolbox.

With this purpose we have performed a series of numerical tests on different standard
databases, publicly available from the UCI Machine Learning Repository [5]. The details
are given in Section 4.2.

Due to the fact that some of the benchmark methods do not accommodate in a simple
way different misclassification costs, the comparisons have been made using the binary
cost structure, as defined in (6). Hence, both (P1) and (P2) apply. Since the LP bound
of (P2) is at least as good as the one obtained from (P1), see Proposition 3, all the results
included in what follows refer to the simpler variant (P2′) of (P2).

Finally, we also want to illustrate that misclassification costs can be accommodated
in a straightforward manner within our framework. This will be shown in Section 4.6.

4.2 The databases

The UCI-Repository databases used in our experiments are of different sizes. A first
group of databases consists of the Glass Identification Database (called here glass),
a subset of the glass database, glassw, consisting only of the ‘window glass’ classes, the
Wdbc Wisconsin Breast Cancer Database, called here wdbc, the Wine Recognition

Database (called here wine), and Yeast Database (called here yeastME), from which only
the three ‘membrane protein’ classes (denoted as ME1, ME2, ME3 in the UCI Repository)
are used. Moreover, two bigger databases are also considered: the Abalone Database,
called here abalone, and the Spambase Database, called here spam. In the abalone, 3
classes (grouping classes 1-8, 9-10, and 11 on) are considered, as cited in [5], and the
qualitative variable has been excluded.

For each database J , the total number of objects |J |, the number of classes |C|, and
the number of variables (all quantitative) n are given in Table 1.

Database J |J | |C| n
glass 214 6 9

glassw 163 3 9
wdbc 569 2 30
wine 178 3 13

yeastME 258 3 8
abalone 4177 3 7

spam 4601 2 57

Table 1: Parameters of the databases

The databases only contain continuous variables, and one can thus calculate dissim-
ilarities according to the weighted Euclidean distance, defined for u = (u1, . . . , un) ∈
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k-NN SVM Trees
database 1-NN 2-NN 3-NN 4-NN 5-NN Lin Pol Rbf Pruned Crude

glass tr 100.00 100.00 100.00 100.00 100.00 60.42 71.75 67.25 77.88 88.68
test 71.43 66.67 66.19 66.19 62.86 58.10 62.38 60.48 66.67 64.29

glassw tr 100.00 100.00 100.00 100.00 100.00 60.97 73.26 71.46 79.86 90.83
test 66.88 63.13 67.50 70.00 70.63 55.63 67.50 68.13 71.25 68.75

wdbc tr 100.00 100.00 100.00 100.00 100.00 98.12 98.49 98.25 96.69 98.95
test 95.36 95.89 96.79 95.89 96.43 97.32 98.04 98.04 92.68 91.96

wine tr 100.00 100.00 100.00 100.00 100.00 99.35 100.00 99.41 95.75 97.71
test 94.71 95.88 96.47 95.29 95.29 99.41 96.47 99.41 87.06 90.00

yeastME tr 100.00 100.00 100.00 100.00 100.00 86.67 90.31 89.11 90.04 94.71
test 80.80 83.60 86.00 86.80 84.00 84.40 86.40 86.00 87.20 88.00

abalone tr 100.00 100.00 100.00 100.00 100.00 63.51 63.09 64.77 65.12 87.40
test 57.12 56.98 60.31 60.70 60.82 63.21 63.07 64.34 62.54 58.78

spam tr 100.00 100.00 100.00 100.00 100.00 90.50 69.36 92.86 94.49 97.94
test 90.87 89.46 90.07 89.52 90.09 90.26 69.00 92.54 91.70 91.67

Table 2: Results with kNN, SVM and Classification Trees

IRn, v = (v1, . . . , vn) ∈ IRn as

d(u, v) =

( ∑
1≤j≤n

ωj (uj − vj)
2

)1/2

, (15)

with each weight ωi given by

ωi =
1

(∆i −∆i)2
, (16)

and ∆i and ∆i respectively represent the highest and the lowest value for the i-th variable
in the database. Observe that this model is equivalent to considering the unweighted
Euclidean distance after rescaling each variable to the interval [0, 1].

All results presented are obtained by 10-fold crossvalidation, e.g. [26].
The averaged percentages of correctly classified objects in both the training samples

(tr) and testing samples (test) are displayed in Table 2.

4.3 Solving to optimality

The worst-case complexity of the problem has already been addressed in Section 2.3. Now
we discuss the empirical behavior of the procedure. In order to compare the running times
and the classification power of p-PNN, the Integer Programs were solved on a PC with a
2.86 GHz Pentium 4 processor and 256 MB RAM. CPLEX 8.1.0 was used as MIP solver.
Due to the hardness of these MIP formulations we imposed an upper bound (MAXT) on
the computing time of 10,800 seconds. In most instances, running times exceeded this
MAXT.
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pPNN random choice Heuristic
p tr test tr test tr test time

(%) (%) (%) (%) (%) (%) (sec.)
6 65.82 60.00 39.05 31.90 67.25 59.52 1.34
7 67.46 60.95 40.26 33.33 70.11 60.48 1.08
8 67.83 61.90 41.27 33.33 72.59 59.52 1.12
9 70.69 65.24 41.32 32.86 73.07 61.90 1.15

10 70.32 56.67 42.96 31.43 75.71 65.24 1.20
11 71.32 57.62 42.96 32.38 75.19 66.67 1.23
12 73.54 62.38 44.92 35.71 76.03 59.52 1.27
13 73.81 65.71 46.03 37.14 76.46 66.19 1.29
14 75.66 62.38 48.04 41.90 78.78 64.76 1.31
15 76.24 60.48 49.26 42.38 77.94 63.81 1.34
16 77.41 67.14 51.75 43.81 78.84 61.43 1.36
17 78.89 66.67 53.12 45.71 78.78 66.19 1.39
18 78.94 65.71 55.45 49.05 79.37 65.71 1.41
20 80.00 66.67 56.98 48.57 80.53 61.43 1.48

Table 3: Results of glass

Tables 3-6 display for different values of the number p of prototypes (first column),
the percentage of correctly classified objects in the training sample (second column) and
in the testing sample (third column) for the four smallest databases. (The other columns
are for later use in Section 4.4.)

Comparing with the benchmark results in Table 2, several conclusions can be drawn.
First, no method systematically outperforms the others. In particular, the p-PNN shows
to be comparable against the remaining methods. Moreover, an adequate choice of the
parameter p makes our method be among the best classifiers. However, how to choose p
is not evident to us, and a crossvalidation process seems to be needed unless the choice
of p is guided by the query times requirements.

On the other hand, the computing times are, in all cases, extremely large, suggesting
the use of heuristic procedures for solving (P2). This will be discussed in more detail in
Section 4.4.

Moreover, from the columns giving the proportion of correctly classified objects in the
training and the testing samples, it is evident that the former strongly overestimates the
latter. Hence, a typical phenomenon of overfitting happens.

4.4 Heuristic approach

The NP-Hardness of the problem as well as the empirical results of Section 4.3 suggest
the use of heuristic procedures in order to speed up computing times.
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pPNN random choice Heuristic
p tr test tr test tr test time

(%) (%) (%) (%) (%) (%) (sec.)
3 66.67 58.75 36.60 30.63 67.29 57.50 0.90
4 71.39 62.50 39.65 35.00 71.81 68.13 0.91
5 72.43 69.38 44.10 40.00 73.68 65.00 0.93
6 75.90 63.75 44.72 38.13 75.35 67.50 0.95
7 76.46 69.38 44.79 38.13 77.08 66.25 0.98
8 78.06 68.75 48.54 41.88 78.47 71.88 1.01
9 78.40 65.63 50.00 43.75 79.51 71.88 1.01

10 79.79 69.38 51.25 43.75 79.38 71.25 1.02
15 83.26 71.88 59.93 51.88 82.36 73.75 1.10
20 86.67 65.63 62.78 53.75 84.31 70.00 1.17
25 89.31 65.63 66.81 64.38 85.76 69.38 1.24
30 92.22 67.50 70.49 65.00 87.71 66.88 1.29
35 94.44 66.88 72.29 64.38 89.24 66.88 1.35
40 96.04 61.25 73.96 65.00 90.21 62.50 1.42

Table 4: Results of glassw

pPNN random choice Heuristic
p tr test tr test tr test time

(%) (%) (%) (%) (%) (%) (sec.)
3 99.28 98.82 85.29 83.53 98.30 96.47 0.91
4 99.54 96.47 86.21 84.71 99.02 96.47 0.95
5 100.00 92.94 87.78 84.71 99.35 95.88 0.97
6 100.00 95.29 87.97 82.94 99.74 96.47 1.00
7 100.00 94.71 88.10 84.12 99.67 96.47 1.03
8 100.00 95.88 89.22 86.47 99.61 94.71 1.05
9 100.00 94.71 90.07 87.06 99.61 97.06 1.10

10 100.00 94.12 90.20 88.24 99.54 93.53 1.10
15 100.00 97.06 92.75 91.76 99.87 96.47 1.19
20 100.00 94.71 92.81 92.35 99.74 96.47 1.26
25 100.00 94.71 94.12 91.76 99.93 96.47 1.35
30 100.00 94.71 94.25 91.76 100.00 91.18 1.38
35 100.00 96.47 94.77 92.35 100.00 95.29 1.43
40 100.00 97.06 95.36 92.35 99.93 94.71 1.52

Table 5: Results of wine
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pPNN random choice Heuristic
p tr test tr test tr test time

(%) (%) (%) (%) (%) (%) (sec.)
3 81.64 68.80 70.04 71.20 87.56 83.60 1.00
4 87.47 86.80 70.22 71.60 88.84 82.80 1.04
5 88.22 83.20 73.87 76.00 89.87 86.40 1.10
6 89.24 84.40 75.51 76.40 89.96 86.00 1.14
7 89.16 85.60 75.82 77.20 90.00 83.60 1.17
8 90.84 86.80 75.78 77.60 91.38 87.60 1.22
9 91.02 86.00 76.00 78.40 90.36 83.20 1.27

10 91.42 87.60 76.89 78.00 90.18 85.60 1.32
15 92.62 84.40 76.80 73.60 91.33 80.80 1.53
20 93.42 81.60 78.04 74.40 91.82 84.80 1.75
25 94.80 82.00 78.80 76.40 92.71 81.60 1.90
30 96.04 77.60 79.64 78.00 92.49 81.60 2.03
35 97.20 78.00 80.27 76.40 93.11 86.00 2.15
40 98.62 81.60 81.24 76.40 93.87 82.00 2.27

Table 6: Results of yeastME

A first and simple choice, yielding promising results, as documented e.g. in [33],
might consist of randomly selecting p prototypes. The results, as shown under the name
random choice in Tables 3-8, are discouraging, particularly when p is small. Hence, more
sophisticated heuristics are needed.

The structure of the problem is such that several existing (meta) heuristic procedures
can be easily adapted to our problem. Multistart, Genetic Algorithms or Tabu Search
have been already proposed with encouraging results for prototype selection, [4].

For both the simplicity of its implementation and the excellent results obtained for
related problems, such as the p-median problem, [21], we have chosen the Variable Neigh-
borhood Search (VNS) approach, proposed by Hansen and Mladenović, see [21] and the
references therein. However, in the same way that we have tested numerically the VNS,
other metaheuristics could be used to tackle the MIP (P1). An empirical comparison of
such methods is beyond the scope of this paper.

VNS combines local search with redefinitions of the neighborhood structure. In our
case we use the same neighborhoods as those already proposed by Hansen and Mladenović
for the p-median problem [19, 20]. Given a feasible solution, i.e. a set of p prototypes with
at least one for each class, its neighborhood of order ` consists of all feasible solutions
that differ from it in at most ` prototypes.

The procedure works as described in Figure 3.
In our experiments, the procedure stops after 5000 calls to step 2(b)i in Figure 3. The

results for the small data sets for which the exact solution was also sought with CPLEX
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1. Initialization. Randomly choose an initial

solution x. Choose a stopping criterion.

2. Repeat until the stopping condition:

(a) Set `← 1.

(b) Repeat until ` = p:

i. Generate randomly a new solution x′

differing in at most ` prototypes with

the current solution x.

ii. If x′ is better than x, set x′ ← x and

go to 2(a); otherwise, set `← ` + 1.

3. Return the best solution found so far.

Figure 3: VNS heuristic

are shown under the name Heuristic in Tables 3-6. Moreover, much larger data sets,
such as abalone or spam, can be handled, see Tables 7 and 8.

It is evident from these tables that a very simple heuristic yields, with very low comput-
ing times, rather sharp solutions on the training samples. However, as remarked before,
the quality of the procedures should not be measured on the training sample (which yields
overoptimistic results) but on the testing sample. As shown in the tables, it turns out
that, on testing samples, the heuristic yields (at much lower computing times) solutions
with comparable quality than those obtained with the exact method.

4.5 Missing values

As commented in Section 2.1, dissimilarities can also be constructed for databases with
missing values.

We have performed some experiments to explore the stability of the classification rule
with respect to the existence of (many) missing values. For this purpose, for different
values of ϑ, a fraction ϑ of data are randomly chosen and replaced by blanks.

We have considered the dissimilarity described in (3), with each ωj defined by (16).
The optimization has been performed using the VNS heuristic detailed in Section 4.4
with the stopping rule described there. In order to reduce the random effects due to
the inclusion of blanks, we have run each test 100 times. The average proportion of
correctly classified objects in the testing sample, for different values of p and ϑ are shown
in Figures 4-7.

The same information, together with the slopes of the regression lines linking per-
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random choice Heuristic
p tr test tr test time

(%) (%) (%) (%) (sec.)
3 41.07 41.68 62.92 62.81 23.40
4 41.35 40.60 63.76 62.69 24.22
5 42.19 41.87 63.80 63.69 25.01
6 43.23 43.07 64.23 63.69 26.20
7 45.86 46.26 64.44 62.76 27.36
8 46.61 46.91 64.67 63.57 28.47
9 46.69 46.88 64.91 63.48 28.88

10 47.80 47.99 64.92 63.60 29.35
20 49.05 49.88 65.41 63.91 38.26
30 51.02 51.53 66.00 62.81 47.02
40 52.01 52.04 66.40 63.98 58.78
50 52.95 52.66 66.56 64.12 64.45
60 53.40 53.29 66.53 63.17 73.95
70 53.91 53.48 66.76 62.88 85.97
80 53.91 52.90 66.93 63.65 95.00

500 62.23 55.08 69.86 59.52 407.40

Table 7: Results for abalone

random choice Heuristic
p tr test tr test time

(%) (%) (%) (%) (sec.)
2 60.54 60.13 83.67 83.30 78.67
3 62.15 61.76 84.64 84.26 78.52
4 69.11 68.41 85.48 85.59 80.19
5 67.84 67.26 85.01 85.02 80.66

10 68.79 69.43 86.30 85.37 88.62
25 72.30 72.98 87.70 87.11 105.57
50 74.66 74.85 88.62 87.13 122.10

100 78.25 77.15 89.14 86.74 175.73
250 82.28 80.59 90.40 86.96 312.24
500 85.08 82.28 92.06 88.17 496.95

Table 8: Results for spam
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Figure 4: Different portions of missing values: yeastME
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Figure 5: Different portions of missing values: glass
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Figure 6: Different portions of missing values: glassw
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Figure 7: Different portions of missing values: wine
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fraction of missing values
p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 0.35 slope
6 64.91 60.54 59.28 56.18 57.87 52.79 52.15 55.51 52.60 57.59 46.98 -33.12
7 64.91 61.11 58.77 58.40 53.16 52.25 56.37 59.64 50.32 52.92 47.38 -36.80
8 66.67 59.65 57.48 56.85 54.76 56.11 54.76 54.44 52.25 47.72 47.96 -41.90
9 56.14 60.36 60.09 56.82 58.40 55.25 55.55 50.63 50.68 52.08 49.01 -29.81

10 59.65 61.42 58.75 55.15 56.75 55.85 54.32 54.59 54.32 49.33 49.31 -30.94
11 59.65 60.45 58.85 59.60 57.72 56.62 56.99 55.02 53.46 51.97 50.92 -27.73
12 61.40 58.13 58.16 58.14 54.68 54.96 54.68 53.32 52.49 50.61 47.84 -32.76
13 66.67 59.77 59.01 58.02 57.61 54.60 53.05 54.33 53.96 50.11 49.61 -38.91
14 59.65 59.86 57.43 57.78 58.64 55.38 54.42 55.41 52.51 51.75 50.69 -26.93
15 64.04 57.63 57.97 57.61 56.73 52.27 56.10 52.57 51.51 51.40 48.51 -34.50
16 52.63 58.25 57.89 57.10 55.74 54.30 55.91 54.68 53.07 51.77 49.96 -16.72
17 53.51 57.40 57.65 57.24 56.75 56.42 54.54 53.68 53.62 52.36 50.28 -16.30
18 55.26 58.75 58.20 58.68 56.36 55.80 55.47 55.32 52.36 51.37 51.32 -20.46

Table 9: Results with missing values for glass

centage of correctly classified objects with fraction of missing data, is shown in Tables
9-12.

As expected, the quality of the classification rule deteriorates as the number of blanks
increases. However, one can see that the correct classification rates decrease slowly, since,
for instance, in yeastME, the rules still classify correctly over 70% of the objects when 30%
of values are missing. It is not evident how the degradation in classification is affected
by the number of prototypes, since no trend is found in the slopes of the corresponding
regression lines.

fraction of missing values
p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 0.35 slope
3 49.21 58.65 56.79 53.27 57.60 57.90 58.68 54.14 51.08 47 43.02 -27.81
4 60.32 60.25 66.03 56.48 59.22 55.03 54.71 51.03 52.25 55.67 52.67 -28.58
5 57.14 60.84 58.81 58.76 59.87 58.75 54.32 56.95 58.89 58.57 59.90 -0.44
6 65.08 62.21 62.92 62.06 52.54 56.48 58.35 62.30 55.67 55.43 52.89 -26.90
7 66.67 61.00 62.76 61.08 59.24 61.10 57.98 58.62 55.13 50.92 53.22 -35.97
8 65.08 57.75 62.87 59.41 60.73 59.94 58.59 59.90 56.02 53.65 46.57 -36.36
9 65.08 63.54 61.27 60.41 59.97 61.63 59.44 58.73 60.11 55.56 61.60 -13.58

Table 10: Results with missing values for glassw
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fraction of missing values
p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 0.35 slope
3 92.31 93.86 93.37 93.56 92.71 91.58 91.10 84.81 91.88 90.18 90.96 -10.85
4 93.59 95.17 96.09 94.67 94.67 93.51 91.01 90.71 92.19 88.21 89.38 -19.40
5 96.15 94.81 90.27 94.79 93.19 92.96 91.65 93.27 89.33 87.95 84.21 -26.09
6 94.87 96.12 94.10 91.15 91.54 92.36 92.56 92.23 90.96 88.92 86.88 -19.97
7 96.15 94.21 94.56 94.26 92.96 93.96 92.79 92.13 89.74 89.38 85.71 -24.52
8 93.59 94.51 95.23 93.71 93.72 93.33 91.94 92.04 91.03 89.78 83.90 -23.83
9 93.59 94.10 93.27 93.44 93.12 92.33 90.27 88.42 89.55 87.83 82.54 -28.42

Table 11: Results with missing values for wine

fraction of missing values
p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 0.35 slope
3 82.28 78.44 75.96 73.51 79.13 77.20 75.89 74.49 73.41 71.08 69.87 -26.58
4 81.01 79.99 77.47 76.92 76.34 76.68 74.35 73.82 71.71 68.96 69.61 -33.20
5 76.58 78.82 80.76 78.68 75.26 75.08 75.05 74.20 69.88 71.48 69.09 -29.13
6 76.58 79.54 79.37 78.01 77.08 73.49 74.22 74.62 70.97 69.42 68.16 -31.94
7 83.54 79.09 78.99 75.49 77.64 74.82 75.55 74.66 72.98 70.51 72.66 -28.31
8 80.38 76.60 77.30 77.71 76.47 75.79 76.18 74.73 71.89 72.44 69.53 -25.00
9 77.85 73.73 78.77 75.51 76.18 73.98 74.35 71.40 72.43 73.06 68.43 -21.09

Table 12: Results with missing values for yeast
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c1 = 1
2
, c−1 = 1

2
c1 = 1

3
, c−1 = 2

3
c1 = 1

11
, c−1 = 10

11

p training cost testing cost training cost testing cost training cost testing cost
2 0.0132937 0.0142857 0.0108466 0.0172619 0.0038420 0.0087662
3 0.0121032 0.0205357 0.0089286 0.0142857 0.0034271 0.0051948
4 0.0108135 0.0160714 0.0089286 0.0101190 0.0029040 0.0102273
5 0.0104167 0.0196429 0.0076720 0.0154762 0.0026515 0.0077922

10 0.0105159 0.0223214 0.0074074 0.0178571 0.0022186 0.0113636
20 0.0090278 0.0303571 0.0068122 0.0202381 0.0020924 0.0175325
30 0.0078373 0.0294643 0.0054233 0.0184524 0.0021284 0.0128247
40 0.0067460 0.0196429 0.0056217 0.0255952 0.0016053 0.0228896

c1 = 1
101

, c−1 = 100
101

c1 = 1
1001

, c−1 = 1000
1001

c1 = 1
10001

, c−1 = 10000
10001

p training cost testing cost training cost testing cost training cost testing cost
2 0.0004145 0.0039074 0.0000418 0.0036053 0.0000042 0.0035748
3 0.0003654 0.0039604 0.0000369 0.0000392 0.0000037 0.0000039
4 0.0003300 0.0092468 0.0000333 0.0089607 0.0000033 0.0089318
5 0.0002947 0.0074788 0.0000297 0.0071768 0.0000030 0.0071462

10 0.0002495 0.0091761 0.0000252 0.0089535 0.0000025 0.0089311
20 0.0002200 0.0109088 0.0000222 0.0107339 0.0000022 0.0107162
30 0.0002122 0.0109441 0.0000214 0.0107375 0.0000021 0.0107166
40 0.0001709 0.0233380 0.0000172 0.0232268 0.0000017 0.0232155

Table 13: Results of wdbc with different costs

4.6 Costs

Considering different misclassification costs for the different classes is of great practical
importance in some fields, such as medical diagnosis.

For illustrative purposes, we explore here how different misclassification costs can be
accommodated within the model. Table 13 shows the average misclassification cost in
training and testing samples after 10-fold crossvalidation for different cost structures in
wdbc.

5 Conclusion and further research

In this note a new Mathematical-Programming-based methodology for multiclass clas-
sification problems has been introduced. Since the single requirement for the data is
the knowledge of a dissimilarity between entries, no statistical assumptions on data are
needed, and qualitative variables, as well as missing values, are easily handled.

Contrary to other competitive procedures, different misclassification costs are accom-
modated within the model in a natural way.
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MIP formulations are suggested, yielding classifiers whose performance is comparable
to benchmarking procedures. However, the computational effort required makes them
prohibitive for databases of moderate size. Stronger MIP formulations, making use of
valid inequalities, as well as more sophisticated bounding strategies, seem to be promising,
since they might increase the size of the instances of this NP-Hard problem which become
solvable in reasonable time.

For large databases heuristics seem to be the only feasible approach. The results ob-
tained with VNS are encouraging. An empirical comparison with other (meta)heuristics,
easily adapted to this problem, remains to be done.

Throughout this paper the dissimilarity d has been considered to be given. However,
the dissimilarity itself can be seen as a (modelling) decision variable. Hints to choose an
appropriate d, e.g. by choosing appropriate weights ωj in the definition (15), are now
under research.

Further study is also needed for the choice of the parameter p. Indeed, our numerical
results do not lead to clear guidelines for choosing p. We propose crossvalidation, although
it should be taken into account that, in applications in which querying time is a critical
issue, p must be kept low.
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Appendix

To show Proposition 3, we will make use of the following technical lemma. Note that a
summation over an empty index-set is assumed to equal 0.

Lemma 5 Let J be a finite set equipped with a strict total order ≺ . For each j ∈ J, let
A(j), B(j) ⊂ J be such that A(j) ∩B(j) = ∅. Let J∗ be any A-nested subset of J , i.e. a
non-empty set satisfying for each j∗ ∈ J∗,

j ∈ J∗ and j ≺ j∗ ⇒ j ∈ A(j∗) (17)

Then the following inequality holds for any set {αj : j ∈ J} of non-negative real numbers.∑
j∈J∗

max{0, αj −
∑

k∈A(j)∪B(j)

αk} ≤ max
j∈J∗

max{0, αj −
∑

k∈B(j)

αk}. (18)

Proof. The result is shown by induction in the cardinality of the set J∗. Observe first that
A-nestedness is hereditary: any nonempty subset of an A-nested set is itself A-nested.

If J∗ has cardinality 1, J∗ = {j∗}, the non-negativity of the scalars αj implies that

αj∗ −
∑

k∈A(j∗)∪B(j∗)

αk ≤ αj∗ −
∑

k∈B(j∗)

αk,

from which (18) holds.
Assume now that (18) holds for all A-nested sets with cardinality at most r, and we

will show that it also holds for any A-nested J∗ with cardinality r + 1. Indeed, since ≺ is
a total order on J∗, there exists some j∗ ∈ J∗ such that

j ≺ j∗ ∀j ∈ J∗, j 6= j∗.

Hence, by condition (17),
j ∈ A(j∗) ∀j ∈ J∗, j 6= j∗. (19)

Since J∗ \ {j∗} is A-nested and has cardinality r, one has by induction that∑
j∈J∗

max{0, αj −
∑

k∈A(j)∪B(j)

αk} =

=
∑

j∈J∗\{j∗}

max{0, αj −
∑

k∈A(j)∪B(j)

αk}+ max{0, αj∗ −
∑

k∈A(j∗)∪B(j∗)

αk}

≤ max
j∈J∗\{j∗}

max{0, αj −
∑

k∈B(j)

αk}+ max{0, αj∗ −
∑

k∈A(j∗)∪B(j∗)

αk}.
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If
αj∗ ≤

∑
k∈A(j∗)∪B(j∗)

αk,

then

max
j∈J∗\{j∗}

max{0, αj −
∑

k∈B(j)

αk}+ max{0, αj∗ −
∑

k∈A(j∗)∪B(j∗)

αk} =

= max
j∈J∗\{j∗}

max{0, αj −
∑

k∈B(j)

αk}

≤ max
j∈J∗

max{0, αj −
∑

k∈B(j)

αk},

showing that (18) holds.
On the other hand, if

αj∗ >
∑

k∈A(j∗)∪B(j∗)

αk,

then, since A(j∗) ∩B(j∗) = ∅,

max
j∈J∗\{j∗}

max{0, αj −
∑

k∈B(j)

αk}+ max{0, αj∗ −
∑

k∈A(j∗)∪B(j∗)

αk} =

= max
j∈J∗\{j∗}

max{0, αj −
∑

k∈B(j)

αk}+ αj∗ −
∑

k∈A(j∗)

αk −
∑

k∈B(j∗)

αk

≤ max
j∈J∗\{j∗}

αj + αj∗ −
∑

k∈A(j∗)

αk −
∑

k∈B(j∗)

αk.

Hence, by (19),

max
j∈J∗\{j∗}

αj + αj∗ −
∑

k∈A(j∗)

αk −
∑

k∈B(j∗)

αk ≤ αj∗ −
∑

k∈B(j∗)

αk

≤ max
j∈J∗

max{0, αj −
∑

k∈B(j)

αk},

showing that (18) holds. 2

Lemma 6 For any optimal solution (x∗, z0) of (LP2) there exists an (x∗, z∗) optimal to
(LP2) satisfying∑

s∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ z∗i ≤
∑

s∈Rc(i)

x∗s ∀i ∈ I (20)

∑
s 6∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ 1− z∗i ≤
∑

s 6∈Rc(i)

x∗s ∀i ∈ I. (21)
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Proof. (LP2) is obtained from (P2) by relaxing the binary constraints xs ∈ {0, 1} to
xs ∈ [0, 1].

For each i ∈ I the variable zi ∈ [0, 1] in (LP2) only appears in the constraints

zi ≤ (1− xt) +
∑

s∈Rc(i)∩Rit

xs ∀t /∈ Rc(i)

Either its coefficient −rc(i) in the objective of (LP2) is zero, and then its value is arbitrary,
or it is strictly negative and minimization will push it upwards, showing that without loss
of optimality we may replace z0 by z∗ defined by

z∗i = min

1, min
t/∈Rc(i)

(1− x∗t ) +
∑

s∈Rc(i)∩Rit

x∗s

 . (22)

Let us show that (x∗, z∗) then satisfies the sought constraints.
Since (x∗, z0) was assumed to be feasible to (LP2), we have

∑
s∈Rc

x∗s ≥ 1∀c ∈ C,,
which, together with z∗ ∈ [0, 1] yields the right-hand side inequalities in both (20) and
(21).

By the definition (22) of z∗, showing the left-hand side inequalities of (20) and (21)
amounts to prove that, for each i ∈ I,∑

s∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ 1 (23)

∑
s∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ min
t6∈Rc(i)

(1− x∗t ) +
∑

s∈Rc(i)∩Rit

x∗s

 (24)

∑
s 6∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ max
t6∈Rc(i)

max

0, x∗t −
∑

s∈Rc(i)∩Rit

x∗s

 . (25)

For any fixed i ∈ I these inequalities are all obtained using Lemma 5 with J = R, α = x∗,
≺=≺i and appropriate choices of J∗, A(s) and B(s), as shown below. That J∗ is A-nested
is then always a direct consequence of the definition of the sets Ris = {t ∈ R : t ≺i s} in
section 3.

1. Set

• J∗ = Rc(i)

• A(s) = Ris, B(s) = ∅

These sets satisfy the conditions in Lemma 5. Hence,∑
s∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ max
s∈Rc(i)

max{0, x∗s} ≤ max
s∈Rc(i)

x∗s ≤ 1,

showing (23).
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2. Setting in Lemma 5

• J∗ = Rc(i)

• A(s) = Ris ∩Rc(i), B(s) = Ris \Rc(i)

we have ∑
s∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ max
s∈Rc(i)

max{0, x∗s −
∑

t∈Ris\Rc(i)

x∗t}

= max{0, x∗s∗ −
∑

t∈Ris∗\Rc(i)

x∗t}

for some s∗ ∈ Rc(i).

Two cases may occur. If x∗s∗ ≤
∑

t∈Ris∗\Rc(i)
x∗t , equation (24) follows easily by

observing that

max{0, x∗s∗ −
∑

t∈Ris∗\Rc(i)

x∗t} = 0 ≤ min
u/∈Rc(i)

{(1− x∗u) +
∑

s∈Rc(i)∩Riu

x∗s}.

If, on the contrary, x∗s∗ >
∑

t∈Ris∗\Rc(i)
x∗t , we have to prove for all u 6∈ Rc(i) that

x∗s∗ −
∑

t∈Ris∗\Rc(i)

x∗t + x∗u −
∑

s∈Rc(i)∩Riu

x∗s ≤ 1. (26)

≺i being a total order, either u ∈ Ris∗ or s∗ ∈ Riu.

In case u ∈ Ris∗ we have

x∗s∗ −
∑

t∈Ris∗\Rc(i)

x∗t + x∗u −
∑

s∈Rc(i)∩Riu

x∗s = x∗s∗ −
∑

t∈(Ris∗\Rc(i))\{u}

x∗t −
∑

s∈Rc(i)∩Riu

x∗s

≤ x∗s∗ ≤ 1.

Otherwise s∗ ∈ Riu and it follows that

x∗s∗ −
∑

t∈Ris∗\Rc(i)

x∗t + x∗u −
∑

s∈Rc(i)∩Riu

x∗s = x∗u −
∑

t∈Ris∗\Rc(i)

x∗t −
∑

s∈(Rc(i)∩Riu)\{s∗}

x∗s

≤ x∗u ≤ 1.

Therefore (26) always holds for all u 6∈ Rc(i), and thus we obtain (24).

3. Finally, setting

• J∗ := I \Rc(i)
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• A(s) = Ris \Rc(i), B(s) = Ris ∩Rc(i)

lemma 5 yields∑
s 6∈Rc(i)

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ max
s 6∈Rc(i)

max{0, x∗s −
∑

t∈Ris∩Rc(i)

x∗t},

showing (25).

2

Proposition 3 (LP2) is at least as tight as (LP1).
Proof. More precisely we will prove that for each optimal solution (x∗, z0) of (LP2)

there exists a feasible solution (x∗, y) of (LP1) having the same objective value in their
respective problems.

For the sake of clarity we introduce the notation

X∗
is

def
= max{0, x∗s −

∑
t∈Ris

x∗t}

Lemma 6 then yields an optimal solution (x∗, z∗) satisfying∑
s∈Rc(i)

X∗
is ≤ z∗i ≤

∑
s∈Rc(i)

x∗s ∀i ∈ I (27)

∑
s 6∈Rc(i)

X∗
is ≤ 1− z∗i ≤

∑
s 6∈Rc(i)

x∗s ∀i ∈ I. (28)

Define then for each i ∈ I

λi =



1, when
∑

s∈Rc(i)

x∗s =
∑

s∈Rc(i)

X∗
is

z∗i −
∑

s∈Rc(i)

X∗
is∑

s∈Rc(i)

x∗s −
∑

s∈Rc(i)

X∗
is

, otherwise

µi =



1, when
∑

s 6∈Rc(i)

x∗s =
∑

s 6∈Rc(i)

X∗
is

1− z∗i −
∑

s 6∈Rc(i)

X∗
is∑

s 6∈Rc(i)

x∗s −
∑

s 6∈Rc(i)

X∗
is

, otherwise
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and observe that λi, µi ∈ [0, 1] for all i by (27) and (28) respectively. These allow now to
construct

yis =

{
(1− λi)X

∗
is + λix

∗
s, when s ∈ Rc(i)

(1− µi)X
∗
is + µix

∗
s, when s 6∈ Rc(i),

Summation over all s ∈ Rc(i) yields after a few calculations∑
s∈Rc(i)

yis = z∗i ∀i ∈ I (29)

showing that z∗ and y correspond as in the construction of (P2), and hence that (x∗, y)
and (x∗, z∗) (and hence (x∗, z0)) yield the same objective value in their respective models.
Thus it only remains to show that (x∗, y) is feasible for (LP1), which, since (x∗, z0) was
feasible for (LP2), reduces to proving that∑

s∈R yis = 1 ∀i ∈ I (30)

x∗s − yis ≤
∑

t∈Ris
x∗t ∀(i, s) ∈ I ×R (31)

yis ≤ x∗s ∀(i, s) ∈ I ×R (32)

yis ≥ 0 (33)

By definition of y, we find similarly as above, that∑
s 6∈Rc(i)

yis = 1− z∗i ∀i ∈ I

which summed with (29) yields (30).
The definition of X∗

is shows we always have X∗
is ≤ x∗s, from which we immediately

obtain by convex combination
X∗

is ≤ yis ≤ x∗s

The right-hand inequality is exactly (32), while the left-hand inequality, by definition of
X∗

is, is in fact

max{0, x∗s −
∑
t∈Ris

x∗t} ≤ yis

which shows both remaining inequalities (31) and (33) .
2
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