354 research outputs found

    Hydrographic conditions and size-fractionated mesoplankton distribution in the Bay of Biscay shelf during spring

    Get PDF
    A general description of the hydrography and the distribution of size-fractionated mesoplankton bio-volume in the Bay of Biscay shelf (from 41° up to 47° 30’ N) during spring (April-May) 2005 is presented. Different hydrographic features, such as the Iberian Poleward Current, continental inputs and associated river plumes, thermohaline fronts or the progression of the seasonal thermocline, were noticeable. Mesoplankton biomass was generally low, except in a narrow coastal fringe along the Spanish shelf and in a relatively extensive area in the inner part of the French shelf, where the seasonal thermocline was already established. The size-structure of the mesoplankton community presented a patchy distribution and significant differences between the surface and sub-surface layers of the water column. The size-fractionated distribution of mesoplankton is discussed in the frame of the observed hydrographic structures.SARDYN EU-project (QLRT-2001-00818

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia

    Get PDF
    Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Orientation and dynamics of transmembrane peptides: the power of simple models

    Get PDF
    In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function

    CCN3: a key growth regulator in Chronic Myeloid Leukaemia

    Get PDF
    Chronic Myeloid Leukaemia (CML) is characterized by expression of the constitutively active Bcr-Abl tyrosine kinase. We have shown previously that the negative growth regulator, CCN3, is down-regulated as a result of Bcr-Abl kinase activity and that CCN3 has a reciprocal relationship of expression with BCR-ABL. We now show that CCN3 confers growth regulation in CML cells by causing growth inhibition and regaining sensitivity to the induction of apoptosis. The mode of CCN3 induced growth regulation was investigated in K562 CML cells using gene transfection and treatment with recombinant CCN3. Both strategies showed CCN3 regulated CML cell growth by reducing colony formation capacity, increasing apoptosis and reducing ERK phosphorylation. K562 cells stably transfected to express CCN3 showed enhanced apoptosis in response to treatment with the tyrosine kinase inhibitor, imatinib. Whilst CCN3 expression was low or undetectable in CML stem cells, primary CD34+ CML progenitors were responsive to treatment with recombinant CCN3. This study shows that CCN3 is an important growth regulator in haematopoiesis, abrogation of CCN3 expression enhances BCR-ABL dependent leukaemogenesis. CCN3 restores growth regulation, regains sensitivity to the induction of apoptosis and enhances imatinib cell kill in CML cells. CCN3 may provide an additional therapeutic strategy in the management of CML

    An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers

    Get PDF
    An altered lipid packing can have a large influence on the properties of the membrane and the lateral distribution of proteins and/or peptides that are associated with the bilayer. Here, it is shown by contact-mode atomic force microscopy that the surface topography of solid-phase bilayers of PC lipids with an unsaturated cis bond in their acyl chains shows surfaces with a large number of line-type packing defects, in contrast to the much smoother surfaces observed for saturated PC lipids. Di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC (POPC) were used. Next, the influence of an altered lipid environment on the lateral distribution of the single α-helical model peptide WALP23 was studied by incorporating the peptide in the bilayers of di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC unsaturated lipids. The presence of WALP23 leads to an increase in the number of packing defects but does not lead to the formation of the striated domains that were previously observed in bilayers of saturated PC lipids and WALP. This is ascribed to the less efficient lateral lipid packing of the unsaturated lipids, while the increase in packing defects is probably an indirect effect of the peptide. Finally, the fact that an altered lipid packing affects the distribution of WALP23 is also confirmed in an additional experiment where the solvent TFE (2,2,2-trifluorethanol) is added to bilayers of di-16:0-PC/WALP23. At 3.5 vol% TFE, the previous striated ordering of the peptide is abolished and replaced by loose lines

    Characterization of the Prokaryotic Sodium Channel NavSp Pore with a Microfluidic Bilayer Platform

    Get PDF
    This paper describes the use of a newly-developed micro-chip bilayer platform to examine the electrophysiological properties of the prokaryotic voltage-gated sodium channel pore (NavSp) from Silicibacter pomeroyi. The platform allows up to 6 bilayers to be analysed simultaneously. Proteoliposomes were incorporated into suspended lipid bilayers formed within the microfluidic bilayer chips. The chips provide access to bilayers from either side, enabling the fast and controlled titration of compounds. Dose-dependent modulation of the opening probability by the channel blocking drug nifedipine was measured and its IC50 determined

    Fatigue in teriflunomide-treated patients with relapsing remitting multiple sclerosis in the real-world Teri-FAST study

    Get PDF
    BACKGROUND: Fatigue is a frequent and disabling symptom of multiple sclerosis (MS) often associated with impaired quality of life (QoL) in patients. Teriflunomide is a once-daily oral immunomodulator used for the treatment of relapsing remitting forms of MS. However, its effect on fatigue is not well known in real life practice. We evaluated the impact of teriflunomide on fatigue in patients with relapsing remitting MS (RRMS) after 2 years of treatment in the real-world Teri-FAST study. METHODS: Teri-FAST was a 2-year, prospective, observational study conducted in France in RRMS patients treated with teriflunomide 14 mg. Fatigue was assessed using the French version of the modified fatigue impact scale (EMIF-SEP). The primary endpoint was the change from baseline in EMIF-SEP score after 2 years of treatment. Secondary endpoints included evaluation of depression (Beck Depression Inventory [BDI]), health-related QoL (Two-Life Scale TLS-QoL 10), self-reported physical activity, and adverse events. RESULTS: 210 eligible patients were included in the study with a mean age of 45.4 years and a mean ± SD Expanded Disability Status Scale score of 1.76 ± 1.43 at baseline. About half (52.4%) of patients had no previous treatment for MS. In the 163 patients who completed at least 1 follow-up visit, the mean change in EMIF-SEP score at Year 2 was -1.54 (95% CI: -4.02, 0.94) indicating that fatigue remained stable. Similarly, there were no changes in depression level and QoL after 2 years of treatment. Physical activity slightly improved with 57% of patients reporting being physically active after 2 years as compared to 46% at baseline. The safety profile of teriflunomide was consistent with that seen during clinical development, and compliance with treatment was high. CONCLUSION: Fatigue scores remained stable in RRMS patients treated with teriflunomide 14 mg over 2 years in real-life setting. Teriflunomide did not negatively impact depression or QoL

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation 'impact (pressure)', with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into 'impact (pressure)' categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from ground-based, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes-including land degradation, desertification and ecosystem restoration-the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions
    corecore