17 research outputs found

    Harnessing PM2.5 Exposure Data to Predict Progression of Fibrotic Interstitial Lung Diseases Based on Telomere Length

    Full text link
    Cross-analysis of clinical and pollution factors could help calculate the risk of fibrotic interstitial lung disease (ILD) development and progression. The intent of this study is to build a body of knowledge around early detection and diagnosis of lung disease, harnessing new data sets generated for other purposes. We cross-referenced exposure levels to particulate matter 2.5 (PM2.5) with telomere length of a cohort of 280 patients with fibrotic ILD to weigh impact and associations. There was no linear correlation between PM2.5 and telomere length in our data sets, as the value of the correlation coefficient was 0.08. This exploratory study offers additional insights into methodologies for investigating the development and prognosis of pulmonary fibrosis

    Serum AGE/RAGEs as potential biomarker in idiopathic pulmonary fibrosis

    Get PDF
    Background: The soluble receptor for advanced glycation end-products (sRAGE) has been suggested that it acts as a decoy for capturing advanced glycation end-products (AGEs) and inhibits the activation of the oxidative stress and apoptotic pathways. Lung AGEs/sRAGE is increased in idiopathic pulmonary fibrosis (IPF). The objective of the study was to evaluate the AGEs and sRAGE levels in serum as a potential biomarker in IPF. Methods: Serum samples were collected from adult patients: 62 IPF, 22 chronic hypersensitivity pneumonitis (cHP), 20 fibrotic non-specific interstitial pneumonia (fNSIP); and 12 healthy controls. In addition, 23 IPF patients were re-evaluated after 3-year follow-up period. Epidemiological and clinical features were recorded: age, sex, smoking habits, and lung function. AGEs and sRAGE were evaluated by ELISA, and the results were correlated with pulmonary functional test values. Results: IPF and cHP groups presented a significant increase of AGE/sRAGE serum concentration compared with fNSIP patients. Moreover, an inverse correlation between AGEs and sRAGE levels were found in IPF, and serum sRAGE at diagnosis correlated with FVC and DLCO values. Additionally, changes in serum AGEs and sRAGE correlated with % change of FVC, DLCO and TLC during the follow-up. sRAGE levels below 428.25 pg/ml evolved poor survival rates. Conclusions: These findings demonstrate that the increase of AGE/sRAGE ratio is higher in IPF, although the levels were close to cHP. AGE/sRAGE increase correlates with respiratory functional progression. Furthermore, the concentration of sRAGE in blood stream at diagnosis and follow-up could be considered as a potential prognostic biomarker

    Identification of MMP28 as a biomarker for the differential diagnosis of idiopathic pulmonary fibrosis

    Get PDF
    Background and objective: Idiopathic Pulmonary Fibrosis (IPF) is a progressive disease of unknown etiology. The diagnosis is based on the identification of a pattern of usual interstitial pneumonia either by high resolution computed tomography and/or histology. However, a similar pattern can be observed in other fibrotic lung disorders, and precise diagnosis remains challenging. Studies on biomarkers contributing to the differential diagnosis are scanty, and still in an exploratory phase. Our aim was to evaluate matrix metalloproteinase (MMP)-28, which has been implicated in abnormal wound healing, as a biomarker for distinguishing IPF from fibrotic non-IPF patients. Methods: The cell localization of MMP28 in lungs was examined by immunohistochemistry and its serum concentration was measured by ELISA in two different populations. The derivation cohort included 82 IPF and 69 fibrotic non-IPF patients. The validation cohort involved 42 IPF and 41 fibrotic non-IPF patients. Results: MMP28 was detected mainly in IPF lungs and localized in epithelial cells. In both cohorts, serum concentrations of MMP28 were significantly higher in IPF versus non-IPF (mostly with lung fibrosis associated to autoimmune diseases and chronic hypersensitivity pneumonitis) and healthy controls (ANOVA, p<0.0001). The AUC of the derivation cohort was 0.718 (95% CI, 0.635-0.800). With a cutoff point of 4.5 ng/mL, OR was 5.32 (95%CI, 2.55-11.46), and sensitivity and specificity of 70.9% and 69% respectively. The AUC of the validation cohort was 0.690 (95%CI, 0.581-0.798), OR 4.57 (95%CI, 1.76-12.04), and sensitivity and specificity of 69.6% and 66.7%. Interestingly, we found that IPF patients with definite UIP pattern on HRCT showed higher serum concentrations of MMP28 than non-IPF patients with the same pattern (7.8 +/- 4.4 versus 4.9 +/- 4.4; p = 0.04). By contrast, no differences were observed when IPF with possible UIP-pattern were compared (4.7 +/- 3.2 versus 3.9 +/- 3.0; p = 0.43). Conclusion These findings indicate that MMP28 might be a useful biomarker to improve the diagnostic certainty of IPF

    Serum calprotectin as new biomarker for disease severity in idiopathic pulmonary fibrosis: a cross-sectional study in two independent cohorts

    Get PDF
    Background: Non-invasive biomarkers for the assessment of disease severity in idiopathic pulmonary fibrosis (IPF) are urgently needed. Calprotectin belongs to the S-100 proteins produced by neutrophils, which likely contribute to IPF pathogenesis. Calprotectin is a well-established biomarker in inflammatory bowel diseases. In this cross-sectional study, we aimed to establish the potential role of calprotectin as a biomarker in IPF. Specifically, we hypothesised that patients with IPF have higher serum calprotectin levels compared with healthy controls, and that calprotectin levels are associated with disease severity. Methods: Blood samples were obtained from healthy volunteers (n=26) and from two independent IPF cohorts (derivation cohort n=26, validation cohort n=66). Serum calprotectin levels were measured with a commercial kit adapted for that purpose and compared between healthy controls and patients with IPF. Clinical parameters, including forced vital capacity, diffusing capacity for carbon monoxide (DLCO) and the Composite Physiologic Index (CPI), were correlated with calprotectin serum levels. Results: The IPF derivation cohort showed increased serum calprotectin levels compared with healthy controls (2.47 +/- 1.67 vs 0.97 +/- 0.53 mu g/mL, p<0.001). In addition, serum calprotectin levels correlated with DLCO% predicted (r=-0.53, p=0.007) and with CPI (r=0.66, p=0.007). These findings were confirmed in an independent IPF validation cohort. Conclusion: Serum calprotectin levels are significantly increased in patients with IPF compared with healthy controls and correlate with DLCO and CPI. Calprotectin might be a potential new biomarker for disease severity in IPF

    Lung Transplant Improves Survival and Quality of Life Regardless of Telomere Dysfunction

    Get PDF
    Trasplante de pulmón; Fibrosis pulmonar; Trastornos de los telómerosTrasplantament pulmonar; Fibrosi pulmonar; Trastorns dels telòmersLung transplantation; Pulmonary fibrosis; Telomere disordersIntroduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable.This study was funded by Instituto de Salud Carlos III through project PI18/00367 (Co-funded by European Regional Development Fund, ERDF, a way to build Europe), Spanish Society of Respiratory (SEPAR), Barcelona Respiratory Network (BRN), and Fundació Ramón Pla Armengol. RP laboratory was funded by grants PI20-00335 (Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain supported by FEDER funds). MM-M was funded by grants PI18/00367 (Fondo de Investigaciones Sanitarias, ISCIII, Spain, supported by FEDER funds), AC19/00006 (Projects of International Programs, ISCIII, Spain, supported by FEDER funds), Cohorte FPI CIBERES-ISCIII, Barcelona Respiratory Network-Fundation Ramon Pla Armengol, Spanish Society of Respiratory (SEPAR), and Catalan Society of Respiratory (SOCAP-FUCAP). CF was funded by Ministerio de Ciencia e Innovación (grant RTC-2017-6471-1; AEI/FEDER, UE), and by Cabildo Insular de Tenerife (CGIEU0000219140)

    Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes

    Get PDF
    Aplastic anemia; DNA repair; Pulmonary fibrosisAnèmia aplàstica; Reparació d'ADN; Fibrosi pulmonarAnemia aplástica; Reparación de ADN; Fibrosis pulmonarBACKGROUND: Telomeres are nucleoprotein structures present at the terminal region of the chromosomes. Mutations in genes coding for proteins involved in telomere maintenance are causative of a number of disorders known as telomeropathies. The genetic origin of these diseases is heterogeneous and has not been determined for a significant proportion of patients. METHODS: This article describes the genetic characterization of a cohort of patients. Telomere length was determined by Southern blot and quantitative PCR. Nucleotide variants were analyzed either by high-resolution melting analysis and Sanger sequencing of selected exons or by massive sequencing of a panel of genes. RESULTS: Forty-seven patients with telomere length below the 10% of normal population, affected with three telomeropathies: dyskeratosis congenita (4), aplastic anemia (22) or pulmonary fibrosis (21) were analyzed. Eighteen of these patients presented known pathogenic or novel possibly pathogenic variants in the telomere-related genes TERT, TERC, RTEL1, CTC1 and ACD. In addition, the analyses of a panel of 188 genes related to haematological disorders indicated that a relevant proportion of the patients (up to 35%) presented rare variants in genes related to DNA repair or in genes coding for proteins involved in the resolution of complex DNA structures, that participate in telomere replication. Mutations in some of these genes are causative of several syndromes previously associated to telomere shortening. CONCLUSION: Novel variants in telomere, DNA repair and replication genes are described that might indicate the contribution of variants in these genes to the development of telomeropathies. Patients carrying variants in telomere-related genes presented worse evolution after diagnosis than the rest of patients analyzed.Funded by grants PI14–01495 and PI17–01401 (Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain supported by FEDER funds) and by one ACCI project from CIBERER and one grant to the FPI cohort from CIBERES

    Lung Transplant Improves Survival and Quality of Life Regardless of Telomere Dysfunction

    Get PDF
    Introduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable

    GSE4‐loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage

    Get PDF
    Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients

    Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes

    Get PDF
    Background: Telomeres are nucleoprotein structures present at the terminal region of the chromosomes. Mutations in genes coding for proteins involved in telomere maintenance are causative of a number of disorders known as telomeropathies. The genetic origin of these diseases is heterogeneous and has not been determined for a significant proportion of patients. Methods: This article describes the genetic characterization of a cohort of patients. Telomere length was determined by Southern blot and quantitative PCR. Nucleotide variants were analyzed either by high-resolution melting analysis and Sanger sequencing of selected exons or by massive sequencing of a panel of genes. Results: Forty-seven patients with telomere length below the 10% of normal population, affected with three telomeropathies: dyskeratosis congenita (4), aplastic anemia (22) or pulmonary fibrosis (21) were analyzed. Eighteen of these patients presented known pathogenic or novel possibly pathogenic variants in the telomere-related genes TERT, TERC, RTEL1, CTC1 and ACD. In addition, the analyses of a panel of 188 genes related to haematological disorders indicated that a relevant proportion of the patients (up to 35%) presented rare variants in genes related to DNA repair or in genes coding for proteins involved in the resolution of complex DNA structures, that participate in telomere replication. Mutations in some of these genes are causative of several syndromes previously associated to telomere shortening
    corecore