14 research outputs found

    Single Nucleotide Polymorphism in hsa-mir-196a-2 and Breast Cancer Risk: A Case Control Study

    Get PDF
    microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic group

    Risk category system to identify pituitary adenoma patients with AIP mutations

    Get PDF
    Background Predictive tools to identify patients at risk for gene mutations related to pituitary adenomas are very helpful in clinical practice. We therefore aimed to develop and validate a reliable risk category system for aryl hydrocarbon receptor-interacting protein (AIP) mutations in patients with pituitary adenomas. Methods A n international cohort of 2227 subjects were consecutively recruited between 2007 and 2016, including patients with pituitary adenomas (familial and sporadic) and their relatives. All probands (n=1429) were screened for AIP mutations, and those diagnosed with a pituitary adenoma prospectively, as part of their clinical screening (n=24), were excluded from the analysis. Univariate analysis was performed comparing patients with and without AIP mutations. Based on a multivariate logistic regression model, six potential factors were identified for the development of a risk category system, classifying the individual risk into low-risk, moderate-risk and high-risk categories. An internal cross-validation test was used to validate the system. Results 1405 patients had a pituitary tumour, of which 43% had a positive family history, 55.5% had somatotrophinomas and 81.5% presented with macroadenoma. Overall, 134 patients had an AIP mutation (9.5%). We identified four independent predictors for the presence of an AIP mutation: age of onset providing an odds ratio (OR) of 14.34 for age 0-18 years, family history (OR 10.85), growth hormone excess (OR 9.74) and large tumour size (OR 4.49). In our cohort, 71% of patients were identified as low risk (<5% risk of AIP mutation), 9.2% as moderate risk and 20% as high risk (≥20% risk). Excellent discrimination (c-statistic=0.87) and internal validation were achieved. Conclusion We propose a user-friendly risk categorisation system that can reliably group patients into high-risk, moderate-risk and low-risk groups for the presence of AIP mutations, thus providing guidance in identifying patients at high risk of carrying an AIP mutation. This risk score is based on a cohort with high prevalence of AIP mutations and should be applied cautiously in other populations

    Risk category system to identify pituitary adenoma patients with AIP mutations.

    Get PDF
    Predictive tools to identify patients at risk for gene mutations related to pituitary adenomas are very helpful in clinical practice. We therefore aimed to develop and validate a reliable risk category system for aryl hydrocarbon receptor-interacting protein (AIP) mutations in patients with pituitary adenomas.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Metformin to reduce metabolic complications and inflammation in patients on systemic glucocorticoid therapy: a randomised, double-blind, placebo-controlled, proof-of-concept, phase 2 trial

    Get PDF
    Background: An urgent need to reduce the metabolic side-effects of glucocorticoid overexposure has been recognised, as glucocorticoid excess can lead to Cushing's syndrome, which is associated with high morbidity. We aimed to evaluate the potential of metformin to reverse such effects while sparing the anti-inflammatory benefits of glucocorticoids.  Methods: We did a randomised, double-blind, placebo-controlled, proof-of-concept, phase 2 trial involving four hospitals in the UK. Patients without diabetes were eligible if they were between the ages of 18 and 75 years with an inflammatory disease treated with continuous prednisolone (≥20 mg/day for ≥4 weeks and remaining on ≥10 mg/day for the subsequent 12 weeks, or its cumulative dose-equivalent). Eligible patients were randomly allocated (1:1) to either the metformin or placebo groups, using a computer-generated randomisation table stratified according to age and BMI. Metformin and placebo were administered orally for 12 weeks in escalating doses: 850 mg/day for the first 5 days, 850 mg twice a day for the next 5 days, and 850 mg three times a day subsequently. The primary outcome was the between-group difference in visceral-to-subcutaneous fat area ratio over 12 weeks, assessed by CT. Secondary outcomes included changes in metabolic, bone, cardiovascular, and inflammatory parameters over 12 weeks. Our analysis followed a modified intention-to-treat principle for the primary outcome. This study is registered with ClinicalTrials.gov, NCT01319994.  Findings: Between July 17, 2012, and Jan 14, 2014, 849 patients were assessed for study eligibility, of which 53 were randomly assigned to receive either metformin (n=26) or placebo (n=27) for 12 weeks. 19 patients in the metformin group and 21 in the placebo group were eligible for the primary outcome analysis. Both groups received an equivalent cumulative dose of glucocorticoids (1860 mg prednisolone-equivalent [IQR 1060–2810] in the metformin group vs 1770 mg [1020–2356] in the placebo group); p=0·76). No change in the visceral-to-subcutaneous fat area ratio between the treatment groups was observed (0·11, 95% CI −0·02 to 0·24; p=0·09), but patients in the metformin group lost truncal subcutaneous fat compared with the placebo group (−3835 mm 2, 95% CI −6781 to −888; p=0·01). Improvements in markers of carbohydrate, lipid, liver, and bone metabolism were observed in the metformin group compared with the placebo group. Additionally, those in the metformin group had improved fibrinolysis, carotid intima–media thickness, inflammatory parameters, and clinical markers of disease activity. The frequency of pneumonia (one event in the metformin group vs seven in the placebo group; p=0·01), overall rate of moderate-to-severe infections (two vs 11; p=0·001), and all-cause hospital admissions due to adverse events (one vs nine; p=0·001) were lower in the metformin group than in the placebo group. Patients in the metformin group had more events of diarrhoea than the placebo group (18 events vs eight; p=0·01).  Interpretation: No significant changes in the visceral-to-subcutaneous fat area ratio between the treatment groups were observed; however, metformin administration did improve some of the metabolic profile and clinical outcomes for glucocorticoid-treated patients with inflammatory disease, which warrants further investigation.  Funding: Barts Charity and Merck Serono

    Landscape of FIPA : AIP and Prospective Diagnosis

    Get PDF
    Context: Familial isolated pituitary adenoma (FIPA) due to aryl hydrocarbon receptor interacting protein (AIP) gene mutations is an autosomal dominant disease with incomplete penetrance. Clinical screening of apparently unaffected AIP mutation (AIPmut) carriers could identify previously unrecognized disease. Objective: To determine the AIP mutational status of FIPA and young pituitary adenoma patients, analyzing their clinical characteristics, and to perform clinical screening of apparently unaffected AIPmut carrier family members. Design: This was an observational, longitudinal study conducted over 7 years. Setting: International collaborative study conducted at referral centers for pituitary diseases. Participants: FIPA families (n = 216) and sporadic young-onset (≤30 y) pituitary adenoma patients (n = 404) participated in the study. Interventions: We performed genetic screening of patients for AIPmuts, clinical assessment of their family members, and genetic screening for somatic GNAS1 mutations and the germline FGFR4 p.G388R variant. Main Outcome Measure(s): We assessed clinical disease in mutation carriers, comparison of characteristics of AIPmut positive and negative patients, results of GNAS1, and FGFR4 analysis. Results: Thirty-seven FIPA families and 34 sporadic patients had AIPmuts. Patients with truncating AIPmuts had a younger age at disease onset and diagnosis, compared with patients with nontruncating AIPmuts. Somatic GNAS1 mutations were absent in tumors from AIPmut-positive patients, and the studied FGFR4 variant did not modify the disease behavior or penetrance in AIPmut-positive individuals.Atotal of 164 AIPmut-positive unaffected family members were identified; pituitary disease was detected in 18 of those who underwent clinical screening. Conclusions: A quarter of the AIPmut carriers screened were diagnosed with pituitary disease, justifying this screening and suggesting a variable clinical course for AIPmut-positive pituitary adenomas

    Gene expression profiling in human breast cancer - toward personalised therapeutics?

    Get PDF
    The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies

    Investigation of two Wnt signalling pathway single nucleotide polymorphisms in a breast cancer-affected Australian population

    Get PDF
    Free to read In the mammary gland, Wnt signals are strongly implicated in initial development of the mammary rudiments and in the ductal branching and alveolar morphogenesis that occurs during pregnancy. Previously, we identified two Wnt signaling pathway-implicated genes, PPP3CA and MARK4, as having a role in more aggressive and potentially metastatic breast tumors. In this study, we examined two SNPs within PPP3CA and MARK4 in an Australian case-control study population for a potential role in human breast cancers. 182 cases and 180 controls were successfully genotyped for the PPP3CA SNP (rs2850328) and 182 cases and 177 controls were successfully genotyped for the MARK4 SNP (rs2395) using High Resolution Melt (HRM) analysis. Genotypes of randomly selected samples for both SNPs were validated by dye terminator sequencing. Chi-square tests were performed to determine any significant differences in the genotype and allele frequencies between the cases and controls. Chi-square analysis showed no statistically significant difference (p > .05) for genotype frequencies between cases and controls for rs2850328 (χ2 = 1.2, p = .5476) or rs2395 (χ2 = .3, p = .8608). Similarly, no statistical difference was observed for allele frequencies for rs2850328 (χ2 = .68, p = .4108) or rs2395 (χ2 = .02, p = .893). Even though an association of the polymorphisms rs2850328 and rs2395 and breast cancer was not detected in our case-control study population, other variants within the PPP3CA and MARK4 genes may still be associated with breast cancer, as both genes are implicated with processes involved in the disease as well as their mutual partaking in the Wnt signaling pathway

    Single nucleotide polymorphism in hsa-mir-196a-2 and breast cancer risk: A case control study

    Get PDF
    Free to read microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic groups

    Detection of mRNA for nuclear receptor co-activators 1 and 3 in archival breast cancer tissue and surrounding stroma: a tissue expression study

    Get PDF
    Before the age of 75 years, approximately 10% of women will be diagnosed with breast cancer, one of the most common malignancies and a leading cause of death among women. The objective of this study was to determine if expression of the nuclear receptor coactivators 1 and 3 (NCoA1 and NCoA3) varied in breast cancer grades. RNA was extracted from 25 breast tumours and transcribed into cDNA which underwent semi-quantitative polymerase chain reaction, normalised using 18S. Analysis indicated that an expression change for NCoA1 in cancer grades and estrogen receptor alpha negative tissue (P= 0.028 and 0.001 respectively). NCoA1 expression increased in grade 3 and estrogen receptor alpha negative tumours, compared to controls. NCoA3 showed a similar, but not significant, trend in grade and a non-significant decrease in estrogen receptor alpha negative tissues. Expression of NCoA1 in late stage and estrogen receptor alpha negative breast tumours may have implications to breast cancer treatment, particularly in the area of manipulation of hormone signalling systems in advanced tumours
    corecore