438 research outputs found

    Efficient and Effective Query Auto-Completion

    Full text link
    Query Auto-Completion (QAC) is an ubiquitous feature of modern textual search systems, suggesting possible ways of completing the query being typed by the user. Efficiency is crucial to make the system have a real-time responsiveness when operating in the million-scale search space. Prior work has extensively advocated the use of a trie data structure for fast prefix-search operations in compact space. However, searching by prefix has little discovery power in that only completions that are prefixed by the query are returned. This may impact negatively the effectiveness of the QAC system, with a consequent monetary loss for real applications like Web Search Engines and eCommerce. In this work we describe the implementation that empowers a new QAC system at eBay, and discuss its efficiency/effectiveness in relation to other approaches at the state-of-the-art. The solution is based on the combination of an inverted index with succinct data structures, a much less explored direction in the literature. This system is replacing the previous implementation based on Apache SOLR that was not always able to meet the required service-level-agreement.Comment: Published in SIGIR 202

    Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo

    Get PDF
    First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM) catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such models for the specific case of CO methanation over stepped metals by comparing to spatially resolved kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by metal surfaces can be significantly increased at step sites, which results in persisting correlations in the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at a higher computational cost, which can be especially challenging for surface reactions on metals due to a large disparity in the time scales of different processes. In order to overcome this issue, we implement and test a recently developed algorithm for achieving temporal acceleration of kMC simulations. While the algorithm overall performs quite well, we identify some challenging cases which may lead to a breakdown of acceleration algorithms and discuss possible directions for future algorithm development

    Perspective: On the active site model in computational catalyst screening

    Get PDF
    First-principles screening approaches exploiting energy trends in surface adsorption represent an unparalleled success story in recent computational catalysis research. Here we argue that our still limited understanding of the structure of active sites is one of the major bottlenecks towards an ever extended and reliable use of such computational screening for catalyst discovery. For low-index transition metal surfaces, the prevalently chosen high-symmetry (terrace and step) sites offered by the nominal bulk-truncated crystal lattice might be justified. For more complex surfaces and composite catalyst materials, computational screening studies will need to actively embrace a considerable uncertainty with respect to what truly are the active sites. By systematically exploring the space of possible active site motifs, such studies might eventually contribute towards a targeted design of optimized sites in future catalysts

    Do Differing Enrichment Methodologies Affect the Belowground Productivity of Spartina Alterniflora?

    Get PDF
    Mariana E. Penny and Stephanie W. Plaisance are students in Environmental Science at Louisiana Tech University. Nathan Hammond is a student in Biological Sciences at Louisiana Tech University. Jennifer M. Hill is an Assistant Professor in Biological Sciences at Louisiana Tech University

    The Notch pathway controls fibrotic and regenerative repair in the adult heart.

    Get PDF
    AIMS: In the adult heart, Notch signalling regulates the response to injury. Notch inhibition leads to increased cardiomyocyte apoptosis, and exacerbates the development of cardiac hypertrophy and fibrosis. The role of Notch in the mesenchymal stromal cell fraction, which contains cardiac fibroblasts and cardiac precursor cells, is, however, largely unknown. In the present study, we evaluate, therefore, whether forced activation of the Notch pathway in mesenchymal stromal cells regulates pathological cardiac remodelling. METHODS AND RESULTS: We generated transgenic mice overexpressing the Notch ligand Jagged1 on the surface of cardiomyocytes to activate Notch signalling in adjacent myocyte and non-myocyte cells. In neonatal transgenic mice, activated Notch sustained cardiac precursor and myocyte proliferation after birth, and led to increased numbers of cardiac myocytes in adult mice. In the adult heart under pressure overload, Notch inhibited the development of cardiomyocyte hypertrophy and transforming growth factor-β/connective tissue growth factor-mediated cardiac fibrosis. Most importantly, Notch activation in the stressed adult heart reduced the proliferation of myofibroblasts and stimulated the expansion of stem cell antigen-1-positive cells, and in particular of Nkx2.5-positive cardiac precursor cells. CONCLUSIONS: We conclude that Notch is pivotal in the healing process of the injured heart. Specifically, Notch regulates key cellular mechanisms in the mesenchymal stromal cell population, and thereby controls the balance between fibrotic and regenerative repair in the adult heart. Altogether, these findings indicate that Notch represents a unique therapeutic target for inducing regeneration in the adult heart via mobilization of cardiac precursor cells

    A transcribed enhancer dictates mesendoderm specification in pluripotency.

    Get PDF
    Enhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification during development. Here, we evaluate remodeling of the enhancer landscape and modulation of the lncRNA transcriptome during mesendoderm specification. We sort mesendodermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes expression, and find that enhancer usage is coordinated with mesendoderm-specific expression of key lineage-determining transcription factors. Many of these enhancers are associated with the expression of lncRNAs. Examination of ESC-specific enhancers interacting in three-dimensional space with mesendoderm-specifying transcription factor loci identifies MesEndoderm Transcriptional Enhancer Organizing Region (Meteor). Genetic and epigenetic manipulation of the Meteor enhancer reveal its indispensable role during mesendoderm specification and subsequent cardiogenic differentiation via transcription-independent and -dependent mechanisms. Interestingly, Meteor-deleted ESCs are epigenetically redirected towards neuroectodermal lineages. Loci, topologically associating a transcribed enhancer and its cognate protein coding gene, appear to represent therefore a class of genomic elements controlling developmental competence in pluripotency

    Concentration-Dependent Effects of a Dietary Ketone Ester on Components of Energy Balance in Mice

    Get PDF
    Objectives: Exogenous ketones may provide therapeutic benefit in treatment of obesity. Administration of the ketone ester (KE) R,S-1,3-butanediol acetoacetate diester (BD-AcAc2) decreases body weight in mice, but effects on energy balance have not been extensively characterized. The purpose of this investigation was to explore concentration-dependent effects of BD-AcAc2 on energy intake and expenditure in mice.Methods: Forty-two male C57BL/6J mice were randomly assigned to one of seven isocaloric diets (n = 6 per group): (1) Control (CON, 0% KE by kcals); (2) KE5 (5% KE); (3) KE10 (10% KE); (4) KE15 (15% KE); (5) KE20 (20% KE); (6) KE25 (25% KE); and (7) KE30 (30% KE) for 3 weeks. Energy intake and body weight were measured daily. Fat mass (FM), lean body mass (LBM), and energy expenditure (EE) were measured at completion of the study. Differences among groups were compared to CON using ANOVA and ANCOVA.Results: Mean energy intake was similar between CON and each concentration of KE, except KE30 which was 12% lower than CON (P < 0.01). KE25 and KE30 had lower body weight and FM compared to CON, while only KE30 had lower LBM (P < 0.03). Adjusted resting and total EE were lower in KE30 compared to CON (P < 0.03), but similar for all other groups.Conclusions: A diet comprised of 30% energy from BD-AcAc2 results in lower energy intake, coincident with lower body weight and whole animal adiposity; while KE20 and KE25 have significantly lower body weight and adiposity effects independent of changes in energy intake or expenditure

    Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    Get PDF
    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment

    The Diversity of Coral Reefs: What Are We Missing?

    Get PDF
    Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m2). The high prevalence of rare species (38% encountered only once), the low level of spatial overlap (81% found in only one locality) and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean) are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated

    MeCP2/H3meK9 are involved in IL-6 gene silencing in pancreatic adenocarcinoma cell lines

    Get PDF
    The aim of the present study was to analyse the molecular mechanisms involved in the Interleukin-6 (IL-6) silencing in pancreatic adenocarcinoma cell lines. Our results demonstrate that TNF-α, a major IL-6 inducer, is able to induce IL-6 only in three out of six cell lines examined. 5-aza-2′-deoxycytidine (DAC), but not trichostatin A (TSA), activates the expression of IL-6 in all cell lines, indicating that DNA methylation, but not histone deacetylation, plays an essential role in IL-6 silencing. Indeed, the IL-6 upstream region shows a methylation status that correlates with IL-6 expression and binds MeCP2 and H3meK9 only in the non-expressing cell lines. Our results suggest that critical methylations located from positions –666 to –426 relative to the transcription start site of IL-6 may act as binding sites for MeCP2
    corecore