941 research outputs found

    Characterization of CMOS Spiral Inductors

    Get PDF
    In this work "full-wave" simulations of integrated inductors are presented and compared with measurements of fabricated CMOS chips. The good agreement between measurements and simulations demonstrates the accuracy of the tool, which is, hence, a cheaper alternative to experimental characterization. Furthermore, the proposed approach may give precious hints for performance improvements, by making internal device fields and currents available for the VLSI designer and providing compact, most effective, equivalent models

    Methylglyoxal-dependent glycative stress and deregulation of SIRT1 functional network in the ovary of PCOS mice

    Get PDF
    Advanced glycation end-products (AGEs) are involved in the pathogenesis and consequences of polycystic ovary syndrome (PCOS), a complex metabolic disorder associated with female infertility. The most powerful AGE precursor is methylglyoxal (MG), a byproduct of glycolysis, that is detoxified by the glyoxalase system. By using a PCOS mouse model induced by administration of dehydroepiandrosterone (DHEA), we investigated whether MG-dependent glycative stress contributes to ovarian PCOS phenotype and explored changes in the Sirtuin 1 (SIRT1) functional network regulating mitochondrial functions and cell survival. In addition to anovulation and reduced oocyte quality, DHEA ovaries revealed altered collagen deposition, increased vascularization, lipid droplets accumulation and altered steroidogenesis. Here we observed increased intraovarian MG-AGE levels in association with enhanced expression of receptor for AGEs (RAGEs) and deregulation of the glyoxalase system, hallmarks of glycative stress. Moreover, DHEA mice exhibited enhanced ovarian expression of SIRT1 along with increased protein levels of SIRT3 and superoxide dismutase 2 (SOD2), and decreased peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1 alpha), mitochondrial transcriptional factor A (mtTFA) and translocase of outer mitochondrial membrane 20 (TOMM20). Finally, the presence of autophagy protein markers and increased AMP-activated protein kinase (AMPK) suggested the involvement of SIRT1/AMPK axis in autophagy activation. Overall, present findings demonstrate that MG-dependent glycative stress is involved in ovarian dysfunctions associated to PCOS and support the hypothesis of a SIRT1-dependent adaptive response

    Dynamic Beam Based Calibration of Beam Position Monitors

    Get PDF
    The degree of spin polarization at LEP is strongly dependent on the knowledge of the vertical orbit. Quadrupole magnet alignment and beam position monitor (BPM) offsets are the main source of the orbi t uncertainty. The error of the orbit monitor readings can be largely reduced by calibrating the monitor relative to the adjacent quadrupole. At LEP, 16 BPM offsets can be determined in parallel durin g 40 minutes. The error of the measure offset is about 30mm. During the LEP run 1997, more than 500 measurements were made and used for the optimisation of polarization. The method of dynamic beam bas ed calibration will be explained and the results will be shown

    Paroxetine efficacy in stuttering treatment.

    Get PDF
    Stuttering is usually developmental, with onset at 4 to 5 years of age, and sometime may have a genetic component; among the possible cause of stuttering, response to conflicts, fears, neurosis, organic models, and learning models have been proposed (Andrews et al., 1983). Stuttering can be neurogenic (or acquired) as a result of stroke, head injury and degenerative or metabolic brain damage (Grant et al., 1999)

    Calibration of centre-of-mass energies at LEP 2 for a precise measurement of the W boson mass

    Full text link
    The determination of the centre-of-mass energies for all LEP 2 running is presented. Accurate knowledge of these energies is of primary importance to set the absolute energy scale for the measurement of the W boson mass. The beam energy between 80 and 104 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is defined in the NMR model, which is calibrated against precise measurements of the average beam energy between 41 and 61 GeV made using the resonant depolarisation technique. The validity of the NMR model is verified by three independent methods: the flux-loop, which is sensitive to the bending field of all the dipoles of LEP; the spectrometer, which determines the energy through measurements of the deflection of the beam in a magnet of known integrated field; and an analysis of the variation of the synchrotron tune with the total RF voltage. To obtain the centre-of-mass energies, corrections are then applied to account for sources of bending field external to the dipoles, and variations in the local beam energy at each interaction point. The relative error on the centre-of-mass energy determination for the majority of LEP 2 running is 1.2 x 10^{-4}, which is sufficiently precise so as not to introduce a dominant uncertainty on the W mass measurement.Comment: 79 pages, 45 figures, submitted to EPJ

    Thermal Transient Measurements of an Ultra-Low-Power MOX Sensor

    Get PDF
    This paper describes a system for the simultaneous dynamic control and thermal characterization of the heating of an Ultra Low Power (ULP) micromachined sensor. A Pulse Width Modulated (PWM) powering system has been realized using a microcontroller to characterize the thermal behavior of a device. Objectives of the research were to analyze the relation between the time period and duty cycle of the PWM signal and the operating temperature of such ULP micromachined systems, to observe the thermal time constants of the device during the heating phase and to measure the total thermal conductance. Constant target heater resistance experiments highlighted that an approximately constant heater temperature at regime can only be obtained if the time period of the heating signal is smaller than 50 s. Constant power experiments show quantitatively a thermal time constant that decreases during heating in a range from 2.3 ms to 2 ms as a function of an increasing temperature rise between the ambient and the operating temperature. Moreover, we calculated the total thermal conductance. Finally, repeatability of experimental results was assessed by guaranteeing the standard deviation of the controlled temperature which was within C in worst case conditions

    Optimizing Nozzle Travel Time in Proton Therapy

    Get PDF
    Proton therapy is a cancer therapy that is more expensive than classical radiotherapy but that is considered the gold standard in several situations. Since there is also a limited amount of delivering facilities for this techniques, it is fundamental to increase the number of treated patients over time. The objective of this work is to offer an insight on the problem of the optimization of the part of the delivery time of a treatment plan that relates to the movements of the system. We denote it as the Nozzle Travel Time Problem (NTTP), in analogy with the Leaf Travel Time Problem (LTTP) in classical radiotherapy. In particular this work: (i) describes a mathematical model for the delivery system and formalize the optimization problem for finding the optimal sequence of movements of the system (nozzle and bed) that satisfies the covering of the prescribed irradiation directions; (ii) provides an optimization pipeline that solves the problem for instances with an amount of irradiation directions much greater than those usually employed in the clinical practice; (iii) reports preliminary results about the effects of employing two different resolution strategies within the aforementioned pipeline, that rely on an exact Traveling Salesman Problem (TSP) solver, Concorde, and an efficient Vehicle Routing Problem (VRP) heuristic, VROOM

    Neuropsychiatric, neuropsychological, and neuroimaging features in isolated REM sleep behavior disorder: The importance of MCI

    Get PDF
    Mild cognitive impairment (MCI) is frequently diagnosed in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), although the extent of MCI-associated neuropathology has not yet been quantified. The present study compared the differences in neuropsychiatric, neuropsychological, and neuroimaging markers of neurodegeneration in MCI-iRBD and iRBD patients with normal cognition
    corecore