37 research outputs found

    Factors controlling the geochemical composition of Limnopolar Lake sediments (Byers Peninsula, Livingston Island, South Shetland Island, Antarctica) during the last ca. 1600 years

    Get PDF
    We sampled a short (57 cm) sediment core in Limnopolar Lake (Byers Peninsula, Livingston Island, South Shetland Islands), which spans the last ca. 1600 years. The core was sectioned at high resolution and analyzed for elemental and mineralogical composition, and scanning electron microscope and energy dispersive X-ray spectrometer (SEM-EDS) analysis of glass mineral particles in selected samples. The chemical record was characterized by a contrasted pattern of layers with high Ca, Ti, Zr, and Sr concentrations and layers with higher concentrations of K and Rb. The former were also enriched in plagioclase and, occasionally, in zeolites, while the latter were relatively enriched in 2 : 1 phyllosilicates and quartz. This was interpreted as reflecting the abundance of volcaniclastic material (Ca rich) versus Jurassic–Lower Cretaceous marine sediments (K rich) – the dominant geological material in the lake catchment. SEM-EDS analysis revealed the presence of abundant volcanic shards in the Ca-rich layers, pointing to tephras most probably related to the activity of Deception Island volcano (located 30 km to the SE). The ages of four main peaks of volcanic-rich material (AD ca. 1840–1860 for L1, AD ca. 1570–1650 for L2, AD ca. 1450–1470 for L3, and AD ca. 1300 for L4) matched reasonably well the age of tephra layers (AP1 to AP3) previously identified in lakes of Byers Peninsula. Some of the analyzed metals (Fe, Mn, Cu, and Cr) showed enrichments in the most recent tephra layer (L1), suggesting relative changes in the composition of the tephras as found in previous investigations. No evidence of significant human impact on the cycles of most trace metals (Cu, Zn, Pb) was found, probably due to the remote location of Livingston Island and the modest research infrastructures; local contamination was found by other researchers in soils, waters and marine sediments on areas with large, permanent research stations. Chromium is the only metal showing a steady enrichment in the last 200 years, but this cannot be directly attributed to anthropogenic pollution since recent research supports the interpretation that climatic variability (reduced moisture content and increased wind intensity) may have resulted in enhanced fluxes of mineral dust and trace elements (Cr among them) to Antarctica. At the same time, some features of the chemical record suggest that climate may have also played a role in the cycling of the elements, but further research is needed to identify the underlying mechanisms.This work was partially supported by projects CGL2010-20672 and REN2000-0345-ANT (Spanish Ministerio de Ciencia e Innovación), POL2006-06635/CGL (Spanish Ministerio de Educación y Cultura), and 10PXIB200182PR (Dirección Xeral de I+D, Xunta de Galicia).Peer reviewe

    Macrofossils in Raraku Lake (Easter Island) integrated with sedimentary and geochemical records: Towards a palaeoecological synthesis for the last 34,000 years

    Get PDF
    Macrofossil analysis of a composite 19m long sediment core from Rano Raraku Lake (Easter Island) wasrelated to litho-sedimentary and geochemical features of the sediment. Strong stratigraphical patterns are shown by indirect gradient analyses of the data. The good correspondence between the stratigraphical patterns derived from macrofossil (Correspondence Analysis) and sedimentary and geochemical data (Principal Component Analysis) shows that macrofossil associations provide sound palaeolimnological information in conjunction with sedimentary data. The main taphonomic factors influencing the macrofossil assemblages are run-off from the catchment, the littoral plant belt, and the depositional environment within the basin. Five main stages during the last 34,000 calibrated years BP (calyrBP) are characterised from the lithological, geochemical, and macrofossil data. From 34 to 14.6calkyrBP (last glacial period) the sediments were largely derived from the catchment, indicating a high energy lake environment with much erosion and run-off bringing abundant plant trichomes, lichens, and mosses into the centre of Raraku Lake. During the early Holocene the infilling of the lake basin and warmer conditions favoured the growth of a littoral plant belt that obstructed terrigenous input. Cladoceran remains and Solanaceae seeds are indicative of reduced run-off and higher values of N and organic C indicate increased aquatic and catchment productivity. From 8.7 to 4.5calkyrBP a swamp occupied the entire basin. The increase of Cyperaceae seeds reflects this swamp development and, with oribatid mites and coleopteran remains, indicates a peaty environment and more anoxic conditions in Raraku. At around 4.5calkyrBP dry conditions prevented peat growth and there is a sedimentary hiatus. About 800calyrBP, peat deposition resumed. Finally, in the last few centuries, a small lake formed within the surrounding swamp. Evidence of human activity is recorded in these uppermost sediments. © 2011 Elsevier Ltd.This research was funded by the Spanish Ministry of Science and Education through the projects LAVOLTER (CGL2004-00683/BTE), GEOBILA (CGL2007-60932/BTE) and CONSOLIDER GRACCIE (CSD2007-00067) and an undergraduate grant (BES-2008-002938 to N. Cañellas-Boltà).Peer Reviewe

    Ecology of the collapse of Rapa Nui society

    Get PDF
    Collapses of food producer societies are recurrent events in prehistory and have triggered a growing concern for identifying the underlying causes of convergences/divergences across cultures around the world. One of the most studied and used as a paradigmatic case is the population collapse of the Rapa Nui society. Here, we test different hypotheses about it by developing explicit population dynamic models that integrate feedbacks between climatic, demographic and ecological factors that underpinned the sociocultural trajectory of these people. We evaluate our model outputs against a reconstruction of past population size based on archaeological radiocarbon dates from the island. The resulting estimated demographic declines of the Rapa Nui people are linked to the long-term effects of climate change on the island's carrying capacity and, in turn, on the 'per-capita food supply'

    Impacts of global change on Mediterranean forests and their services

    Get PDF
    The increase in aridity, mainly by decreases in precipitation but also by higher temperatures, is likely the main threat to the diversity and survival of Mediterranean forests. Changes in land use, including the abandonment of extensive crop activities, mainly in mountains and remote areas, and the increases in human settlements and demand for more resources with the resulting fragmentation of the landscape, hinder the establishment of appropriate management tools to protect Mediterranean forests and their provision of services and biodiversity. Experiments and observations indicate that if changes in climate, land use and other components of global change, such as pollution and overexploitation of resources, continue, the resilience of many forests will likely be exceeded, altering their structure and function and changing, mostly decreasing, their capacity to continue to provide their current services. A consistent assessment of the impacts of the changes, however, remains elusive due to the difficulty of obtaining simultaneous and complete data for all scales of the impacts in the same forests, areas and regions. We review the impacts of climate change and other components of global change and their interactions on the terrestrial forests of Mediterranean regions, with special attention to their impacts on ecosystem services. Management tools for counteracting the negative effects of global change on Mediterranean ecosystem- services are finally discussed

    Deciphering chrysophyte responses to climate seasonality

    No full text
    12 páginas, 5 figuras.Climate change involves alterations in seasonality as well as shifts in mean annual temperature. Cold temperate lakes show strong seasonality, with winter ice cover and alternating mixing and stratification periods during the ice-free season. These physical changes are ultimately related to seasonal weather variation and also drive annual phytoplankton succession. Therefore, phytoplankton remains in lake sediment records are potentially useful for reconstructing past seasonal climate signals. With the exception of investigations on varved sediments, however, little research has been carried out on the subject. Here we present two lines of evidence demonstrating that chrysophyte stomatocysts can be useful for inferring past climatic seasonality. First, we show that marked seasonal stomatocyst replacement is related to periods of the main physical processes in the lake. Second, using instrumental climate data and microfossils in sediment cores, we show that two main components of stomatocyst variability over the last *150 years are related to seasonal fluctuations. The first of these components is related to stomatocysts present during summer stratification that respond to general warming trends, particularly in July and August. The second component relates to stomatocysts typically present in the spring and autumn mixing periods. Numbers of these two stomatocyst types vary inversely in response to variation in spring (April– May) temperatures. The number of stomatocyst types affected by spring temperatures is much greater than those related to summer temperatures. We provide evidence that chrysophyte stomatocysts are an excellent proxy for spring air temperature reconstructions, with little influence from summer or general annual trends. We also show that with relatively little effort, it is possible to categorise the chrysophyte stomatocyst assemblage of a lake to carry out detailed investigation of the record of seasonal changes preserved within the sediment.This research was supported by a Marie Curie Fellowship (CREATE) as part of the European Community Program under contract number EVK2-CT-2000- 50007 and an I3P grant (2007–2010) to Sergi Pla from the Spanish government. This study was funded by Spanish Government research projects: GRACCIE (CSD2007-00067) and ECOFOS (CGL2007-64177/BOS).Peer reviewe

    Assessing microbial diversity using recent lake sediments and estimations of spatio-temporal diversity.

    No full text
    8 páginas, 1 figura.Aim  Recent papers have used large palaeolimnological datasets to reveal the biodiversity patterns of aquatic microorganisms. However, scant attention has been paid to the influence of time on these patterns. Where lake surficial sediment samples are used as integrals of diversity, the time interval of each sample varies according to differences in sediment accumulation rates. This paper aims to test the reliability of using lake surface sediments to measure and to compare microbial diversity when the potential influences of the species–time relationships are taken into account. Location  Alpine lakes in Europe. Methods  We analysed microorganism (siliceous microalgae) assemblages in three European Alpine lakes using short sediment cores (210Pb-dated) and annual sediment trap samples from 12 UK lakes. The same number of individuals was pooled for each sample 500 times to avoid sampling effort effects and to standardize species diversity estimation. The influence of time on the diversity score was assessed by simulating an increase of time span for surface sediment samples by cumulatively adding in successive sediment core samples (from the most recent to the oldest). We used species richness (S) and the exponential of the bias-corrected Shannon entropy index (exp(Hb-c)) to estimate diversity. Results  Increasing the time interval represented by a surficial sediment sample did not affect the diversity results. The estimation of diversity was similar for cumulative and non-cumulative samples. Diversity estimation was only altered in lakes experiencing high community turnover due to strong environmental forcing during the time period spanned by the cumulative sample. Main conclusions  The use of surface lake sediments is suitable for estimating the average site diversity of free-living microorganisms. Diversity is integrated in a single sample and species assemblage composition is derived from microbial communities living in distinct lake microhabitats. Species remains, accumulated in a single sample over several years of environmental variability, represent a diversity integral that captures a spatio-temporal component equivalent to the γ-diversity measure.This research was supported by an I3P grant (2007–2010) from the Spanish government to Sergi Pla-RabesPeer reviewe

    Els estanys petits d’alta muntanya

    No full text
    Peer reviewe
    corecore