8 research outputs found

    Using continuous forest inventory data for control of wood production and use in large areas: a case study in Lithuania

    No full text
    Background and Objectives: Significant progress in developing European national forest inventory (NFI) systems could ensure accurate evaluations of gross annual increment (GAI) and its components by employing direct measurements. However, the use of NFI data is insufficient for increasing the efficiency of forest management and the use of wood, as well as for meeting sustainable forestry needs. Specification of forest characteristics, such as GAI and its components, identification of the main factors that impact forest growth, accumulation of wood, and natural losses are among the key elements promoting the productivity of forest stands and possibilities of rational use of wood in large forest areas. The aims of this research were (a) to validate the quality of forest statistics provided by a standwise forest inventory (SFI) and (b) to reveal the potential benefits of rational wood use at the country level through the analysis of forest management results, which are based on GAI, including its components derived from the NFI. Materials and Methods: SFI and NFI data from 1998–2017 were collected from 5600 permanent sample plots and used to evaluate the main forest characteristics. Potential wood use was estimated based on the assumption that 50–70% of the total GAI is accumulated for final forest use. Results: Mean growing stock volume (GSV) is underestimated by 7–14% on average in the course of SFI. Therefore, continuous monitoring of the yield changes in forest stands, detection of factors negatively affecting yield and its accumulation, and regulation of these processes by silviculture measures could increase potential forest use in Lithuania. Conclusions: Implementation of sample-based NFI resulted in an improvement of forest characteristics and led to an increase in GSV and GAI. Continuously gathered data on GAI and its components are a prerequisite for efficient forest management and control of the use [...]Kauno miškų ir aplinkos inžinerijos kolegijaLietuvos agrarinių ir miškų mokslų centro filialas Miškų institutasMiškų ir ekologijos fakultetasPrivačių miškų savininkų asociacijaValstybinė miškų tarnybaVytauto Didžiojo universiteta

    Do small protected habitat patches within boreal production forests provide value for biodiversity conservation? A systematic review protocol

    Get PDF
    Forest harvesting is the main driver of habitat degradation and biodiversity loss in forests of the boreal zone. To mitigate harmful effects, small-scale habitats with high biodiversity values have been protected within production forests. These include woodland key habitats, and other small-scale habitat patches protected by voluntary conservation action. This article describes a protocol for a systematic review to synthesize the value of small habitat patches left within production landscapes for biodiversity. The topic for this systematic review arose from a discussion with the Finnish forestry sector and was further defined in a stakeholder workshop. Research question: Do small protected habitat patches within production forests provide value for biodiversity conservation in boreal forests? Animal, plant and fungal diversities are addressed as well as the amount of deadwood within the habitat patches as proxy indicators for biodiversity.Peer reviewe

    Extracellular vesicles as innovative tool for diagnosis, regeneration and protection against neurological damage

    No full text
    Abstract Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell–cell communication in a wide range of embryonic developmental processes and in fetal–maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood–brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., “liquid biopsies”, but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed
    corecore