4 research outputs found

    Development and Mechanical Characterization of Ni-Cr Alloy Foam Using Ultrasonic-Assisted Electroplating Coating Technique

    Get PDF
    Metal foams and alloy foams are a novel class of engineering materials and have numerous applications because of their properties such as high energy absorption, light weight and high compressive strength. In the present study, the methodology adopted to develop a Ni-Cr alloy foam is discussed. Polyurethane (PU) foam of 40PPI (parts per inch) pore density was used as the precursor and coating techniques such as electroless nickel plating (ELN), ultrasonic-assisted electroplating of nickel (UAEPN), and pack cementation or chromizing were used to develop the Ni-Cr alloy foam. The surface morphology, strut thickness and minimum weight gain after each coating stage were evaluated. It was observed from the results that the adopted coating techniques did not damage the original ligament cross-section of the PU precursor. The minimum weight gain and the coating thickness after the UAEPN process were observed to be 42 g and 40–60 μm, respectively. The properties such as porosity percentage, permeability and compressive strength were evaluated. Finally, the pressure drop through the developed foam was estimated and verified to determine whether the developed foam can be used for filtering applications.Filipe Fernandes acknowledges the CEMMPRE (UIDB/00285/2020) and ARISE (LA/P/0112/2020) projects, sponsored by national funds through the FCT—Fundação para a Ciência e a Tecnologia

    Improvement in Corrosion Performance of ECAPed AZ80/91 Mg Alloys Using SS316 HVOF Coating

    Get PDF
    Mg AZ80/91 alloys are highly popular due to their lightweight, high strength-to-weight ratio, and good machinability. However, their moderate mechanical properties and corrosion resistance have limited their use in the automotive, aerospace, and defense sectors. This study primarily aims to enhance the mechanical performance and corrosion resistance of Mg AZ80/91 alloys, making them more suitable for applications in the aerospace and automotive industries. Firstly, equal-channel angular pressing (ECAP) of Mg AZ80/91 alloys has been attempted to improve their mechanical properties. Secondly, a high-velocity oxy-fuel (HVOF) coating of SS316 was applied over the Mg AZ80/91 substrate to enhance its corrosion resistance. In the second step, an HVOF coating of SS316 is applied over the Mg AZ80/91 substrate for better corrosion resistance. The experimental findings demonstrate that the application of an SS316 coating on the ECAP-4P AZ80/91 Mg alloy substrate results in a uniform and dense layer with an average thickness of approximately 80 ± 5 µm. The HVOF-based SS316 coating on 4P-ECAP leads to a noteworthy enhancement in microhardness and a reduction in the corrosion rate, especially in a NaCl solution (3.5 wt.%). This improvement holds great promise for producing reliable, long-lasting, and resilient automotive, aerospace, and defense components. The application of an HVOF-based SS316 coating onto the AZ80 Mg alloy, which had not undergone ECAP treatment, led to a substantial enhancement in corrosion resistance. This resulted in a notable decrease in the corrosion current density, reducing it from 0.297 mA/cm2 to 0.10 µA/cm2

    Utilizing graph machine learning within drug discovery and development

    No full text
    corecore