183 research outputs found

    Computed tomographic atlas for the new international lymph node map for lung cancer: A radiation oncologist perspective

    Get PDF
    International audiencePurpose : To develop a reproducible definition for each mediastinal lymph node station based on the new TNM classification for lung cancer. Methods and Materials : This paper proposes an atlas using the new international lymph node map used in the seventh edition of the TNM classification for lung cancer. Four radiation oncologists and 1 diagnostic radiologist were involved in the project to put forward a reproducible radiologic description for the lung lymph node stations.Results : The International Association for the Study of Lung Cancer lymph node definitions for stations 1 to 11 have been described and illustrated on axial computed tomographic scan images using a certified radiotherapy planning system. Conclusions : This atlas will assist both diagnostic radiologists and radiation oncologists in accurately defining the lymph node stations on computed tomographic scan in patients diagnosed with lung cancer

    Potential link between the Sphingosine-1-Phosphate (S1P) system and defective alveolar macrophage phagocytic function in Chronic Obstructive Pulmonary Disease (COPD)

    Get PDF
    We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function.We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model.We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD "disease effect" rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis.Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets.Jameel Barnawi, Hai Tran, Hubertus Jersmann, Stuart Pitson, Eugene Roscioli, Greg Hodge, Robyn Meech, Rainer Haberberger, Sandra Hodg

    Outcomes of a randomized controlled trial assessing a smartphone Application to reduce unmet needs among people diagnosed with CancEr (ACE)

    Get PDF
    © 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. Background: Smartphone technology represents an opportunity to deliver practical solutions for people affected by cancer at a scale that was previously unimaginable, such as information, appointment monitoring, and improved access to cancer support services. This study aimed to determine whether a smartphone application (app) reduced the unmet needs among people newly diagnosed with cancer. Methods: A single blind, multisite randomized controlled trial to determine the impact of an app-based, 4-month intervention. Newly diagnosed cancer patients were approached at three health service treatment clinics. Results: Eighty-two people were randomized (intervention; n = 43 and control; n = 39), average age was 59.5 years (SD: 12.9); 71% female; 67% married or in a de facto relationship. At baseline, there were no differences in participants’ characteristics between the groups. No significant effects, in reducing unmet needs, were demonstrated at the end of intervention (4-month) or 12-month follow-up. Overall, 94% used the app in weeks 1-4, which decreased to 41% in weeks 13-16. Mean app use time per participant: Cancer Information, 6.9 (SD: 18.9) minutes; Appointment Schedule, 5.1 (SD: 9.6) minutes; Cancer Services 1.5 minutes (SD: 6.8); Hospital Navigation, 1.4 (SD: 2.8) minutes. Conclusions: Despite consumer involvement in the design of this smartphone technology, the app did not reduce unmet needs. This may have been due to the study being underpowered. To contribute to a meaningful understanding and improved implementation of smartphone technology to support people affected by cancer, practical considerations, such as recruitment issues and access to, and confidence with, apps, need to be considered. Australian New Zealand Clinical Trials Registration (ACTRN) Trial Registration: 12616001251415; WEF 7/9/2016

    Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue

    Get PDF
    Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKC alpha, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKC alpha directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residueopen

    Sphingosine Kinase-1 Is Required for Toll Mediated β-Defensin 2 Induction in Human Oral Keratinocytes

    Get PDF
    Host defense against invading pathogens is triggered by various receptors including toll-like receptors (TLRs). Activation of TLRs is a pivotal step in the initiation of innate, inflammatory, and antimicrobial defense mechanisms. Human beta-defensin 2 (HBD-2) is a cationic antimicrobial peptide secreted upon gram-negative bacterial perturbation in many cells. Stimulation of various TLRs has been shown to induce HBD-2 in oral keratinocytes, yet the underlying cellular mechanisms of this induction are poorly understood.Here we demonstrate that HBD-2 induction is mediated by the Sphingosine kinase-1 (Sphk-1) and augmented by the inhibition of Glycogen Synthase Kinase-3beta (GSK-3beta) via the Phosphoinositide 3-kinase (PI3K) dependent pathway. HBD-2 secretion was dose dependently inhibited by a pharmacological inhibitor of Sphk-1. Interestingly, inhibition of GSK-3beta by SB 216763 or by RNA interference, augmented HBD-2 induction. Overexpression of Sphk-1 with concomitant inhibition of GSK-3beta enhanced the induction of beta-defensin-2 in oral keratinocytes. Ectopic expression of constitutively active GSK-3beta (S9A) abrogated HBD-2 whereas kinase inactive GSK-3beta (R85A) induced higher amounts of HBD-2.These data implicate Sphk-1 in HBD-2 regulation in oral keratinocytes which also involves the activation of PI3K, AKT, GSK-3beta and ERK 1/2. Thus we reveal the intricate relationship and pathways of toll-signaling molecules regulating HBD-2 which may have therapeutic potential

    3D-printed microplate inserts for long term high-resolution imaging of live brain organoids

    Get PDF
    Background: Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months). Results: Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates highresolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids. Conclusions: This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.Mariana Oksdath Mansilla, Camilo Salazar-Hernandez, Sally L. Perrin, Kaitlin G. Scheer, Gökhan Cildir, John Toubia, Kristyna Sedivakova, Melinda N. Tea, Sakthi Lenin, Elise Ponthier, Erica C. F. Yeo, Vinay Tergaonkar, Santosh Poonnoose, Rebecca J. Ormsby, Stuart M. Pitson, Michael P. Brown, Lisa M. Ebert, and Guillermo A. Gome

    Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival

    Get PDF
    Extent: 14 p.The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.Daniel Thomas, Jason A. Powell, Benjamin D. Green, Emma F. Barry, Yuefang Ma, Joanna Woodcock, Stephen Fitter, Andrew C.W. Zannettino, Stuart M. Pitson, Timothy P. Hughes, Angel F. Lopez, Peter R. Shepherd, Andrew H. Wei, Paul G. Ekert and Mark A. Guthridg

    High incidence of metastatic disease in primary high grade and large extremity soft tissue sarcomas treated without chemotherapy

    Get PDF
    BACKGROUND: The risk of metastasis and the survival in patients with primary extremity soft tissue sarcomas is worse when tumour size is large and the grade of malignancy is high. Such tumours may receive chemotherapy and/or radiation therapy (RTX) for optimising local control. Irradiation can either be applied preoperatively or after tumour resection. The question arises if the kind of RTX in the absence of chemotherapy influences the outcome concerning local control, metastatic disease, survival and complications. METHODS: We retrospectively reviewed the clinical outcome of 233 patients with a primary extremity soft tissue sarcoma treated between 1990 – 2000 with a mean follow-up of 35.8 (4–120) months in our institute. 41 patients had high grade, deep and large tumours (>8 cm), an AJCC stage III (no evidence of metastasis prior to treatment) and were treated with limb salvage surgery and irradiation but stayed without additional chemotherapy. Two groups of patients were compared: the first group received postoperative RTX after tumour resection (n = 33); the second group was treated with preoperative RTX (n = 8). Both groups did not differ concerning clinical parameters. We analysed primary and secondary outcomes. RESULTS: 56% (23/41) of the population developed metastatic disease, 24% (10/41) local recurrence. The risk of metastasis was higher in the group with preoperative irradiation (p = 0.046). The overall (p = 0.0248) and relapse free survival (p = 0.104) were worse in this group. The delay to tumour resection amounted 8 weeks on average in the preoperative group. Local control was not different (p = 0.38) in both study groups. Wound infections and other combined therapy related complications were equally distributed (p = 0.22). CONCLUSION: Without chemotherapy there remains a high risk of metastasis in AJCC grade 3 patients. In high risk patients treated without chemotherapy the elapsed time to tumour resection after preoperative radiation might contribute to the development of metastasis. This outcome may support the thesis that a combination of RTX and offensive multimodal treatment protocols is advantageous in such a subset of patient

    Disruption of Retinoic Acid Receptor Alpha Reveals the Growth Promoter Face of Retinoic Acid

    Get PDF
    Retinoic acid (RA), the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs), exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591). The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER), the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P), the sphingolipid with prosurvival activity.We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase)-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling.In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet integrated processes apparently concur to the growth-promoter effects of RA
    corecore