222 research outputs found

    Measuring shell resonances of spherical acoustic resonators

    Get PDF
    International audienceCoupling between gas and shell is a concern in the experiment used at LNE-CNAM to determine the Boltzmann constant kB by an acoustic method. As the walls of real resonators are not perfectly ridig, some perturbations occur in the frequency range of the acoustic resonances measured within helium gas contained in the caivity. As a contribution for a better understanding of the phenomenon, we have built an experiment to measure the shell modes of the spherical resonators in use in our laboratory. We report here a work in progress to assess these modes using a hammer blow method together with modal analysis. The study is carried out with air-filled, copper-walled, half-litre quasi-spherical resonator in the frequency range from 1 Hz to 20 kHz. Our results show that the shell modes expand into multiple resonances of similar modal shape, including the "breathing" mode. We confirm the observations reported in other works [4,6] of shell perturbations at other frequencies than the breathing frequency

    CENTRE OF PRESSURE DURING COUNTERMOVEMENT JUMP: IS IT RELATED TO EXPERTISE OR PERFORMANCE?

    Get PDF
    The purpose of this study was to investigate how specific variables related to the centre of pressure (CoP) trajectory during a countermovement jump (CMJ) carry information related to expertise and performance. The variables investigated were: lengths and average velocities during eccentric (Ecc) and concentric (Con) phases, medio-lateral (ML) and antero-posterior (AP) ranges of movement, and ML bias. In terms of expertise, the curves were tracked and compared over four jump sessions conducted by both experienced and inexperienced jumpers to investigate adaptive changes towards a more efficient way of jumping. Links between performance and those characteristics were also investigated. Our study indicated that no useful information related to either expertise or performance can be extracted from the CoP trajectory during a CMJ

    Global investigation of protein–protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences

    Get PDF
    Protein–protein interaction (PPI) maps provide insight into cellular biology and have received considerable attention in the post-genomic era. While large-scale experimental approaches have generated large collections of experimentally determined PPIs, technical limitations preclude certain PPIs from detection. Recently, we demonstrated that yeast PPIs can be computationally predicted using re-occurring short polypeptide sequences between known interacting protein pairs. However, the computational requirements and low specificity made this method unsuitable for large-scale investigations. Here, we report an improved approach, which exhibits a specificity of ∼99.95% and executes 16 000 times faster. Importantly, we report the first all-to-all sequence-based computational screen of PPIs in yeast, Saccharomyces cerevisiae in which we identify 29 589 high confidence interactions of ∼2 × 107 possible pairs. Of these, 14 438 PPIs have not been previously reported and may represent novel interactions. In particular, these results reveal a richer set of membrane protein interactions, not readily amenable to experimental investigations. From the novel PPIs, a novel putative protein complex comprised largely of membrane proteins was revealed. In addition, two novel gene functions were predicted and experimentally confirmed to affect the efficiency of non-homologous end-joining, providing further support for the usefulness of the identified PPIs in biological investigations

    Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification

    Get PDF
    Background Short rotation coppice willow is a potential lignocellulosic feedstock in the United Kingdom and elsewhere; however, research on optimising willow specifically for bioethanol production has started developing only recently. We have used the feedstock Salix viminalis × Salix schwerinii cultivar 'Olof' in a three-month pot experiment with the aim of modifying cell wall composition and structure within the stem to the benefit of bioethanol production. Trees were treated for 26 or 43 days with tension wood induction and/or with an application of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile that is specific to secondary cell walls. Reaction wood (tension and opposite wood) was isolated from material that had received the 43-day tension wood induction treatment. Results Glucan content, lignin content and enzymatically released glucose were assayed. All measured parameters were altered without loss of total stem biomass yield, indicating that enzymatic saccharification yield can be enhanced by both alterations to cell wall structure and alterations to absolute contents of either glucan or lignin. Conclusions Final glucose yields can be improved by the induction of tension wood without a detrimental impact on biomass yield. The increase in glucan accessibility to cell wall degrading enzymes could help contribute to reducing the energy and environmental impacts of the lignocellulosic bioethanol production process

    Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow

    Get PDF
    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and N-15 as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2-3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production

    The impact of altitude on the sleep of young elite soccer players (isa3600)

    Get PDF
    Background Altitude training is used by elite athletes to improve sports performance, but it may also disrupt sleep. The aim of this study was to examine the effects of two weeks at high altitude on the sleep of young elite athletes. Methods Participants (n=10) were members of the Australian under-17 soccer team on an 18-day (19-night) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3,600 m). Sleep was monitored using polysomnography during a baseline night at 430 m and three nights at 3,600 m (immediately after ascent, one week after ascent, two weeks after ascent). Data were analysed using effect size statistics. Results All results are reported as comparisons with baseline. Rapid eye movement (REM) sleep was likely lower immediately upon ascent to altitude, possibly lower after one week, and similar after two weeks. On all three nights at altitude, hypopneas and desaturations were almost certainly higher; oxygen saturation was almost certainly lower; and central apneas, respiratory arousals, and periodic breathing were very likely higher. The effects on REM sleep were common to all but one participant, but the effects on breathing were specific to only half the participants. Conclusions The immediate effects of terrestrial altitude of 3,600 m are to reduce the amount of REM sleep obtained by young elite athletes, and to cause 50% of them to have impaired breathing during sleep. REM sleep returns to normal after two weeks at altitude, but impaired breathing does not improve

    The sleep of elite athletes at sea level and high altitude: A comparison of sea-level natives and high-altitude natives (ISA3600)

    Get PDF
    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives

    Wellness, fatigue and physical performance acclimatisation to a 2-week soccer camp at 3600 m (ISA3600)

    Get PDF
    Objectives To examine the time course of wellness, fatigue and performance during an altitude training camp (La Paz, 3600 m) in two groups of either sea-level (Australian) or altitude (Bolivian) native young soccer players. Methods Wellness and fatigue were assessed using questionnaires and resting heart rate (HR) and HR variability. Physical performance was assessed using HR responses to a submaximal run, a Yo-Yo Intermittent recovery test level 1 (Yo-YoIR1) and a 20 m sprint. Most measures were performed daily, with the exception of Yo-YoIR1 and 20 m sprints, which were performed near sea level and on days 3 and 10 at altitude. Results Compared with near sea level, Australians had moderate-to-large impairments in wellness and Yo-YoIR1 relative to the Bolivians on arrival at altitude. The acclimatisation of most measures to altitude was substantially slower in Australians than Bolivians, with only Bolivians reaching near sea-level baseline high-intensity running by the end of the camp. Both teams had moderately impaired 20 m sprinting at the end of the camp. Exercise HR had large associations (r>0.5–0.7) with changes in Yo-YoIR1 in both groups. Conclusions Despite partial physiological and perceptual acclimatisation, 2 weeks is insufficient for restoration of physical performance in young sea-level native soccer players. Because of the possible decrement in 20 m sprint time, a greater emphasis on speed training may be required during and after altitude training. The specific time course of restoration for each variable suggests that they measure different aspects of acclimatisation to 3600 m; they should therefore be used in combination to assess adaptation to altitude

    High biomass yield increases in a primary effluent wastewater phytofiltration are associated to altered leaf morphology and stomatal size in Salix miyabeana

    Get PDF
    Municipal wastewater treatment using willow ‘phyto’-filtration has the potential for reduced environmental impact compared to conventional treatment practices. However, the physiological adaptations underpinning tolerance to high wastewater irrigation in willow are unknown. A one-hectare phytofiltration plantation established using the Salix miyabeana cultivar ‘SX67’ in Saint-Roch-de-l'Achigan, Quebec, Canada, tested the impact of unirrigated, potable water or two loads of primary effluent wastewater 19 and 30 ML ha−1 yr−1. A nitrogen load of 817 kg N ha−1 from wastewater did not increase soil pore water nitrogen concentrations beyond Quebec drinking water standards. The willow phytofiltration phenotype had increased leaf area (+106–142%) and leaf nitrogen (+94%) which were accompanied by significant increases in chlorophyll a + b content. Wastewater irrigated trees had higher stomatal sizes and a higher stomatal pore index, despite lower stomatal density, resulting in increased stomatal conductance (+42–78%). These developmental responses led to substantial increases in biomass yields of 56–207% and potable water controls revealed the nitrogen load to be necessary for the high productivity of 28–40 t ha−1 yr−1 in wastewater irrigated trees. Collectively, this study suggests phytofiltration plantations could treat primary effluent municipal wastewater at volumes of at least 19 million litres per hectare and benefit from increased yields of sustainable biomass over a two-year coppice cycle. Added-value cultivation practices, such as phytofiltration, have the potential to mitigate negative local and global environmental impact of wastewater treatment while providing valuable services and sustainable bioproducts
    corecore