27 research outputs found

    Emergence of Quantum Correlations from Non-Locality Swapping

    Full text link
    By studying generalized non-signalling theories, the hope is to find out what makes quantum mechanics so special. In the present paper, we revisit the paradigmatic model of non-signalling boxes and introduce the concept of a genuine box. This will allow us to present the first generalized non-signalling model featuring quantum-like dynamics. In particular, we present the coupler, a device enabling non-locality swapping, the analogue of quantum entanglement swapping, as well as teleportation. Remarkably, part of the boundary between quantum and post-quantum correlations emerges in our study.Comment: 5 pages. 6 figures. Minor Revisions. To appear in PR

    An entropic approach to local realism and noncontextuality

    Full text link
    For any Bell locality scenario (or Kochen-Specker noncontextuality scenario), the joint Shannon entropies of local (or noncontextual) models define a convex cone for which the non-trivial facets are tight entropic Bell (or contextuality) inequalities. In this paper we explore this entropic approach and derive tight entropic inequalities for various scenarios. One advantage of entropic inequalities is that they easily adapt to situations like bilocality scenarios, which have additional independence requirements that are non-linear on the level of probabilities, but linear on the level of entropies. Another advantage is that, despite the nonlinearity, taking detection inefficiencies into account turns out to be very simple. When joint measurements are conducted by a single detector only, the detector efficiency for witnessing quantum contextuality can be arbitrarily low.Comment: 12 pages, 8 figures, minor mistakes correcte

    Limitations of entropic inequalities for detecting nonclassicality in the postselected Bell causal structure

    Get PDF
    Classical and quantum physics impose different constraints on the joint probability distributions of observed variables in a causal structure. These differences mean that certain correlations can be certified as non-classical, which has both foundational and practical importance. Rather than working with the probability distribution itself, it can instead be convenient to work with the entropies of the observed variables. In the Bell causal structure with two inputs and outputs per party, a technique that uses entropic inequalities is known that can always identify non-classical correlations. Here we consider the analogue of this technique in the generalization of this scenario to more outcomes. We identify a family of non-classical correlations in the Bell scenario with two inputs and three outputs per party whose non-classicality cannot be detected through the direct analogue of the previous technique. We also show that use of Tsallis entropy instead of Shannon entropy does not help in this case. Furthermore, we give evidence that natural extensions of the technique also do not help. More precisely, our evidence suggests that even if we allow the observed correlations to be post-processed according to a natural class of non-classicality non-generating operations, entropic inequalities for either the Shannon or Tsallis entropies cannot detect the non-classicality, and hence that entropic inequalities are generally not sufficient to detect non-classicality in the Bell causal structure. In addition, for the bipartite Bell scenario with two inputs and three outputs we find the vertex description of the polytope of non-signalling distributions that satisfy all of the CHSH-type inequalities, which is one of the main regions of investigation in this work.Comment: 14+7 pages, 3 figures, v2: new results added and parts of the text restructured, v3: version accepted for publication (title differs from published version due to editorial convention

    Feasibility of loophole-free nonlocality tests with a single photon

    Full text link
    Recently much interest has been directed towards designing setups that achieve realistic loss thresholds for decisive tests of local realism, in particular in the optical regime. We analyse the feasibility of such Bell tests based on a W-state shared between multiple parties, which can be realised for example by a single photon shared between spatial modes. We develop a general error model to obtain thresholds on the efficiencies required to violate local realism, and also consider two concrete optical measurement schemes.Comment: 8 pages, 5 figure

    Macrorealism from entropic Leggett-Garg inequalities

    Full text link
    We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-ss particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-ss system in similar manner as does the entropic Bell inequality (Phys. Rev. Lett. 61, 662 (1988)) by a pair of spin-ss particles forming a composite spin singlet state.Comment: 5 pages, RevTeX, 2 eps figures, Accepted for publication in Phys. Rev.

    Entanglement and non-locality are different resources

    Full text link
    Bell's theorem states that, to simulate the correlations created by measurement on pure entangled quantum states, shared randomness is not enough: some "non-local" resources are required. It has been demonstrated recently that all projective measurements on the maximally entangled state of two qubits can be simulated with a single use of a "non-local machine". We prove that a strictly larger amount of this non-local resource is required for the simulation of pure non-maximally entangled states of two qubits ψ(α)=cosα00+sinα11\ket{\psi(\alpha)}= \cos\alpha\ket{00}+\sin\alpha\ket{11} with 0<απ7.80<\alpha\lesssim\frac{\pi}{7.8}.Comment: 8 pages, 3 figure

    Secrecy extraction from no-signalling correlations

    Get PDF
    Quantum cryptography shows that one can guarantee the secrecy of correlation on the sole basis of the laws of physics, that is without limiting the computational power of the eavesdropper. The usual security proofs suppose that the authorized partners, Alice and Bob, have a perfect knowledge and control of their quantum systems and devices; for instance, they must be sure that the logical bits have been encoded in true qubits, and not in higher-dimensional systems. In this paper, we present an approach that circumvents this strong assumption. We define protocols, both for the case of bits and for generic dd-dimensional outcomes, in which the security is guaranteed by the very structure of the Alice-Bob correlations, under the no-signalling condition. The idea is that, if the correlations cannot be produced by shared randomness, then Eve has poor knowledge of Alice's and Bob's symbols. The present study assumes, on the one hand that the eavesdropper Eve performs only individual attacks (this is a limitation to be removed in further work), on the other hand that Eve can distribute any correlation compatible with the no-signalling condition (in this sense her power is greater than what quantum physics allows). Under these assumptions, we prove that the protocols defined here allow extracting secrecy from noisy correlations, when these correlations violate a Bell-type inequality by a sufficiently large amount. The region, in which secrecy extraction is possible, extends within the region of correlations achievable by measurements on entangled quantum states.Comment: 23 pages, 4 figure

    Comments on "There is no axiomatic system for the quantum theory"

    Full text link
    In a recent paper, Nagata [1] claims to derive inconsistencies from quantum mechanics. In this paper, we show that the inconsistencies do not come from quantum mechanics, but from extra assumptions about the reality of observables

    Logical independence and quantum randomness

    Full text link
    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental appendi

    Quantum Communication between N partners and Bell's inequalities

    Full text link
    We consider a family of quantum communication protocols involving NN partners. We demonstrate the existence of a link between the security of these protocols against individual attacks by the eavesdropper, and the violation of some Bell's inequalities, generalizing the link that was noticed some years ago for two-partners quantum cryptography. The arguments are independent of the local hidden variable debate.Comment: 4 pages, 2 figure
    corecore