162 research outputs found
A universal optical all-fiber omnipolarizer
Wherever the polarization properties of a light beam are of concern, polarizers and polarizing beamsplitters (PBS) are indispensable devices in linear-, nonlinear-and quantum-optical schemes. By the very nature of their operation principle, transformation of incoming unpolarized or partially polarized beams through these devices introduces large intensity variations in the fully polarized outcoming beam(s). Such intensity fluctuations are often detrimental, particularly when light is post-processed by nonlinear crystals or other polarization-sensitive optic elements. Here we demonstrate the unexpected capability of light to self-organize its own state-of-polarization, upon propagation in optical fibers, into universal and environmentally robust states, namely right and left circular polarizations. We experimentally validate a novel polarizing device-the Omnipolarizer, which is understood as a nonlinear dual-mode polarizing optical element capable of operating in two modes-as a digital PBS and as an ideal polarizer. Switching between the two modes of operation requires changing beam's intensity
Mechanical probing of liquid foam aging
We present experimental results on the Stokes experiment performed in a 3D
dry liquid foam. The system is used as a rheometric tool : from the force
exerted on a 1cm glass bead, plunged at controlled velocity in the foam in a
quasi static regime, local foam properties are probed around the sphere. With
this original and simple technique, we show the possibility of measuring the
foam shear modulus, the gravity drainage rate and the evolution of the bubble
size during coarsening
Angle of repose and segregation in cohesive granular matter
We study the effect of fluids on the angle of repose and the segregation of
granular matter poured into a silo. The experiments are conducted in two
regimes where: (i) the volume fraction of the fluid is small and it forms
liquid bridges between particles, and (ii) the particles are completely
immersed in the fluid. The data is obtained by imaging the pile formed inside a
quasi-two dimensional silo through the transparent glass side walls. In the
first series of experiments, the angle of repose is observed to increase
sharply with the volume fraction of the fluid and then saturates at a value
that depends on the size of the particles. We systematically study the effect
of viscosity by using water-glycerol mixtures to vary it over at least three
orders of magnitude while keeping the surface tension almost constant. Besides
surface tension, the viscosity of the fluid is observed to have an effect on
the angle of repose and the extent of segregation. In case of bidisperse
particles, segregation is observed to decrease and finally saturate depending
on the size ratio of the particles and the viscosity of the fluid. The sharp
initial change and the subsequent saturation in the extent of segregation and
angle of repose occurs over similar volume fraction of the fluid. In the second
series of experiments, particles are poured into a container filled with a
fluid. Although the angle of repose is observed to be unchanged, segregation is
observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure
Domain Walls in Two-Component Dynamical Lattices
We introduce domain-wall (DW) states in the bimodal discrete nonlinear
Schr{\"{o}}dinger equation, in which the modes are coupled by cross phase
modulation (XPM). By means of continuation from various initial patterns taken
in the anti-continuum (AC) limit, we find a number of different solutions of
the DW type, for which different stability scenarios are identified. In the
case of strong XPM coupling, DW configurations contain a single mode at each
end of the chain. The most fundamental solution of this type is found to be
always stable. Another solution, which is generated by a different AC pattern,
demonstrates behavior which is unusual for nonlinear dynamical lattices: it is
unstable for small values of the coupling constant (which measures the
ratio of the nonlinearity and coupling lengths), and becomes stable at larger
. Stable bound states of DWs are also found. DW configurations generated by
more sophisticated AC patterns are identified as well, but they are either
completely unstable, or are stable only at small values of . In the case of
weak XPM, a natural DW solution is the one which contains a combination of both
polarizations, with the phase difference between them 0 and at the
opposite ends of the lattice. This solution is unstable at all values of ,
but the instability is very weak for large , indicating stabilization as the
continuum limit is approached. The stability of DWs is also verified by direct
simulations, and the evolution of unstable DWs is simulated too; in particular,
it is found that, in the weak-XPM system, the instability may give rise to a
moving DW.Comment: 14 pages, 14 figures, Phys. Rev. E (in press
Wet Granular Materials
Most studies on granular physics have focused on dry granular media, with no
liquids between the grains. However, in geology and many real world
applications (e.g., food processing, pharmaceuticals, ceramics, civil
engineering, constructions, and many industrial applications), liquid is
present between the grains. This produces inter-grain cohesion and drastically
modifies the mechanical properties of the granular media (e.g., the surface
angle can be larger than 90 degrees). Here we present a review of the
mechanical properties of wet granular media, with particular emphasis on the
effect of cohesion. We also list several open problems that might motivate
future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics;
tex-style change
Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest
Additional file 1. Raw data and calculations for all experiments as well as an overview of experiments in this study
Ocean current connectivity propelling the secondary spread of a marine invasive comb jelly across western Eurasia
Aim: Invasive species are of increasing global concern. Nevertheless, the mechanisms driving furtherdistribution after the initial establishment of non-native species remain largely unresolved, especiallyin marine systems. Ocean currents can be a major driver governing range occupancy, but this hasnot been accounted for in most invasion ecology studies so far. We investigate how well initialestablishment areas are interconnected to later occupancy regions to test for the potential role ofocean currents driving secondary spread dynamics in order to infer invasion corridors and thesource–sink dynamics of a non-native holoplanktonic biological probe species on a continental scale.Location: Western Eurasia.Time period: 1980s–2016.Major taxa studied: ‘Comb jelly’ Mnemiopsis leidyi.Methods: Based on 12,400 geo-referenced occurrence data, we reconstruct the invasion historyof M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match thetemporal and spatial spread dynamics with large-scale connectivity patterns via ocean currents.Additionally, genetic markers are used to test the predicted connectivity between subpopulations.Results: Ocean currents can explain secondary spread dynamics, matching observed range expansionsand the timing of first occurrence of our holoplanktonic non-native biological probe species,leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after coldwinters were followed by rapid recolonizations at a speed of up to 2,000 km per season. SourceJASPERS ET AL. | 815areas hosting year-round populations in highly interconnected regions can re-seed genotypes overlarge distances after local extinctions.Main conclusions: Although the release of ballast water from container ships may contribute tothe dispersal of non-native species, our results highlight the importance of ocean currents drivingsecondary spread dynamics. Highly interconnected areas hosting invasive species are crucial forsecondary spread dynamics on a continental scale. Invasion risk assessments should considerlarge-scale connectivity patterns and the potential source regions of non-native marine species
- …