1,384 research outputs found

    A Bayesian method for detecting stellar flares

    Get PDF
    We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model. This is required to fit underlying light curve variations that are expected in the data, which could otherwise partially mimic a flare. We characterise the false alarm probability and efficiency of this method and compare it with a simpler thresholding method based on that used in Walkowicz et al (2011). We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95% of flares with S/N less than ~20, as compared to S/N of ~25 for the simpler method. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have characterised their durations and and signal-to-noise ratios.Comment: Accepted for MNRAS. The code used for the analysis can be found at https://github.com/BayesFlare/bayesflare/releases/tag/v1.0.

    Population synthesis and parameter estimation of neutron stars with continuous gravitational waves and third-generation detectors

    Full text link
    Precise measurement of stellar properties through the observation of continuous gravitational waves from spinning non-axisymmetric neutron stars can shed light onto new physics beyond terrestrial laboratories. Although hitherto undetected, prospects for detecting continuous gravitational waves improve with longer observation periods and more sensitive gravitational wave detectors. We study the capability of the Advanced Laser Interferometer Gravitational-Wave Observatory, and the Einstein Telescope to measure the physical properties of neutron stars through continuous gravitational wave observations. We simulate a population of Galactic neutron stars, assume continuous gravitational waves from the stars have been detected, and perform parameter estimation of the detected signals. Using the estimated parameters, we infer the stars' moments of inertia, ellipticities, and the components of the magnetic dipole moment perpendicular to the rotation axis. The estimation of the braking index proved challenging and is responsible for the majority of the uncertainties in the inferred parameters. Using the Einstein Telescope with an observation period of 5 yrs, point estimates using median can be made with errors of ~ 10 - 100% and ~ 5 - 50% respectively, subject to the inference of the braking index. The perpendicular magnetic dipole moment could not be accurately inferred for neutron stars that emit mainly gravitational waves.Comment: 11 pages, 7 figure

    Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    Get PDF
    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors

    The declining representativeness of the British party system, and why it matters

    Get PDF
    In a recent article, Michael Laver has explained ‘Why Vote-Seeking Parties May Make Voters Miserable’. His model shows that, while ideological convergence may boost congruence between governments and the median voter, it can reduce congruence between the party system and the electorate as a whole. Specifically, convergence can increase the mean distance between voters and their nearest party. In this article we show that this captures the reality of today’s British party system. Policy scale placements in British Election Studies from 1987 to 2010 confirm that the pronounced convergence during the past decade has left the Conservatives and Labour closer together than would be optimal in terms of minimising the policy distance between the average voter and the nearest major party. We go on to demonstrate that this comes at a cost. Respondents who perceive themselves as further away from one of the major parties in the system tend to score lower on satisfaction with democracy. In short, vote-seeking parties have left the British party system less representative of the ideological diversity in the electorate, and thus made at least some British voters miserable

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure

    'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom

    Get PDF
    Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter

    A Bayesian method for detecting stellar flares

    Full text link

    Population synthesis and parameter estimation of neutron stars with continuous gravitational waves and third-generation detectors

    Get PDF
    Precise measurement of stellar properties through the observation of continuous gravitational waves from spinning non-axisymmetric neutron stars can shed light onto new physics beyond terrestrial laboratories. Although hitherto undetected, prospects for detecting continuous gravitational waves improve with longer observation periods and more sensitive gravitational wave detectors. We study the capability of the Advanced Laser Interferometer Gravitational-Wave Observatory, and the Einstein Telescope to measure the physical properties of neutron stars through continuous gravitational wave observations. We simulate a population of Galactic neutron stars, assume continuous gravitational waves from the stars have been detected, and perform parameter estimation of the detected signals. Using the estimated parameters, we infer the stars’ moments of inertia, ellipticities, and the components of the magnetic dipole moment perpendicular to the rotation axis. The estimation of the braking index proved challenging and is responsible for the majority of the uncertainties in the inferred parameters. Using the Einstein Telescope with an observation period of 5 yr5\, {\rm {yr}}, point estimates using median can be made on the moments of inertia with error of ∌10 ⁣− ⁣100  per cent\sim 10\!-\!100~{{\ \rm per\ cent}} and on the ellipticities with error of ∌5 ⁣− ⁣50  per cent\sim 5\!-\!50~{{\ \rm per\ cent}}, subject to the inference of the braking index. The perpendicular magnetic dipole moment could not be accurately inferred for neutron stars that emit mainly gravitational waves

    Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    Get PDF
    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.Comment: Accepted for publication in PAS

    The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves

    Get PDF
    We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed study of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby (z<0.6z < 0.6) black-hole binaries in the early phases of coalescence with a chirp mass of 10^{10}\,\rmn{M}_\odot of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.Comment: fixed error in equation (4). [13 pages, 6 figures, 1 table, published in MNRAS
    • 

    corecore