of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 527, 10564-10574 (2024)
Advance Access publication 2023 December 11

https://doi.org/10.1093/mnras/stad3811

Population synthesis and parameter estimation of neutron stars with
continuous gravitational waves and third-generation detectors

Yuhan Hua “,'?* Karl Wette “,">* Susan M. Scott "> and Matthew D. Pitkin “'3*

L Centre for Gravitational Astrophysics, Australian National University, Canberra, ACT 2601, Australia
2ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, VIC 3122, Australia
3CEDAR Audio Ltd, Cambridge CB21 5BS, UK

4SUPA, University of Glasgow, Glasgow GI12 8QQ, UK

Accepted 2023 December 7. Received 2023 December 6; in original form 2023 September 3

ABSTRACT

Precise measurement of stellar properties through the observation of continuous gravitational waves from spinning non-
axisymmetric neutron stars can shed light onto new physics beyond terrestrial laboratories. Although hitherto undetected,
prospects for detecting continuous gravitational waves improve with longer observation periods and more sensitive gravitational
wave detectors. We study the capability of the Advanced Laser Interferometer Gravitational-Wave Observatory, and the Einstein
Telescope to measure the physical properties of neutron stars through continuous gravitational wave observations. We simulate
a population of Galactic neutron stars, assume continuous gravitational waves from the stars have been detected, and perform
parameter estimation of the detected signals. Using the estimated parameters, we infer the stars’ moments of inertia, ellipticities,
and the components of the magnetic dipole moment perpendicular to the rotation axis. The estimation of the braking index
proved challenging and is responsible for the majority of the uncertainties in the inferred parameters. Using the Einstein
Telescope with an observation period of 5 yr, point estimates using median can be made on the moments of inertia with error
of ~ 10-100 per cent and on the ellipticities with error of ~ 5-50 per cent, subject to the inference of the braking index. The
perpendicular magnetic dipole moment could not be accurately inferred for neutron stars that emit mainly gravitational waves.
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1 INTRODUCTION

One hundred years after Einstein (1915) published his paper on the
general theory of relativity, the first gravitational wave detection
(the binary black hole merger GW 150914, Abbott et al. 2016) was
made on September 14, 2015 by the Advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO, Aasi et al. 2015), a major
milestone for gravitational wave astronomy. The observation of the
binary neutron star merger GW 170817 by LIGO and Virgo (Acernese
et al. 2014) in both gravitational and electromagnetic radiation
(Abbott et al. 2017a, b) is an example of multimessenger astronomy
and offers hope to further our understanding of neutron stars, which
are known for their extreme densities and currently poorly understood
physics.

Gravitational waves from mergers of binary neutron stars only
convey information at the end of their life cycle, when they are under
strong mutual gravitational perturbation. Alternatively, a neutron star
with asymmetries about its axis of rotation can generate continuous
gravitational waves (henceforth ‘continuous waves’) that are long-
lived and quasi-monochromatic (Zimmermann & Szedenits 1979;
Bonazzola & Gourgoulhon 1996; Riles 2017; Sieniawska & Bejger
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2019). As continuous waves are generated by neutron stars in their
equilibrium state, they could provide complementary insights into
the stars’ physical properties not conveyed through binary neutron
star mergers. Continuous waves are weaker than gravitational waves
from mergers, however, and have yet to be detected by the current
second-generation detectors LIGO and Virgo (Piccinni 2022; Riles
2023).

Efforts to detect continuous waves from neutron stars include
development of, and improvements to, data analysis techniques for
various types of searches (Tenorio, Keitel & Sintes 2021; Wette
2023). These are typically specialized to a variety of sources, includ-
ing but not limited to targeted searches and narrow-band searches
for known pulsars (Zhang et al. 2021; Abbott et al. 2022b), directed
searches for supernova remnants (Lindblom & Owen 2020; Abbott
et al. 2021b), and all-sky surveys for undiscovered neutron stars
(Abbottetal. 2019, 2022a; Covas et al. 2022). Directly increasing the
sensitivities of gravitational wave detectors by further suppressing
the noise sources also improves the prospect of a first detection.
Current upgrades to the second-generation detectors are anticipated
to reduce the noise amplitude spectral density by a factor of two
(Miller et al. 2015).

The planned third generation detectors are expected to achieve a
tenfold increase in strain sensitivity in a wide frequency range, offer-
ing hope to the detection of gravitational waves from other sources
beyond binary compact object mergers (Sathyaprakash et al. 2012;
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Bailes et al. 2021; Hall 2022). Proposed third generation ground-
based detector concepts include the Einstein Telescope (ET) and the
Cosmic Explorer, both of which are planned to begin construction
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in the 2030s. The Einstein Telescope is expected to have three arms
of 10 km length, arranged in an equilateral triangle formation and
located underground. It will have three detectors at the vertices of the
triangle and two interferometers at each detector, forming a total of
six interferometers (Punturo et al. 2010; Sathyaprakash et al. 2012).
Cosmic Explorer is planned to be constructed on the surface with a
design similar to that of LIGO, but with arm length increased tenfold
to 40 km (Reitze et al. 2019; Evans et al. 2021).

In this work we present a study of the potential for observations
of continuous waves from isolated neutron stars by LIGO and the
third generation detector Einstein Telescope, and the estimation of
the continuous wave signal parameters. In addition, we also estimate
the errors from the inference of neutron star properties, including
the principal moment of inertia, ellipticity, and the component of
magnetic dipole moment perpendicular to the rotation axis, using a
theoretical framework developed by Lu et al. (2023). After reviewing
relevant background in Section 2, we synthesize a population of neu-
tron stars emitting continuous waves and electromagnetic radiation
in Section 3, and infer the stellar properties of ten neutron stars with
the largest continuous wave characteristic strain amplitude using
Bayesian inference in Section4. We conclude with a discussion in
Section 5.

2 BACKGROUND

Currently, neutron stars are observed primarily as pulsars. A pulsar
emits electromagnetic radiation, typically directed along its magnetic
dipole axis as a result of a strong stellar magnetic field (~10'2G). The
open field lines of the magnetic field are strong enough to accelerate
charges to a relativistic speed sufficient to escape the magnetosphere
(Kramer 2005). If the dipole axis of the magnetic field is not aligned
with the axis of rotation, the accelerated charges produce regular
pulses of electromagnetic radiation at the same frequency as the
rotation of the pulsar. A pulsar may be thought of as an extraterrestrial
‘lighthouse’ that emits radiation at a fixed location for an observer.
Pulsar evolution is well described using its period P and spin-down
P, as both its characteristic age

o = —— M
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and magnetic field strength
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depend only on these two parameters (Kramer 2005). (The braking
index n is defined and explained below in equation (5).)

In addition to electromagnetic radiation, neutron stars may also
emit continuous waves through several mechanisms, such as de-
formation away from axi-symmetry due to their magnetic fields
(Zimmermann & Szedenits 1979; Bonazzola & Gourgoulhon 1996),
quasi-normal fluid perturbations known as r-modes (Andersson
1998; Friedman & Morsink 1998; Owen et al. 1998), or accretion
of matter from a binary companion star (Bildsten 1998; Watts et al.
2008). Deformation of neutron stars about their rotation axes can be
caused by cooling and cracking of the crust (Pandharipande, Pines
& Smith 1976), a non-axisymmetric magnetic field (Zimmermann
& Szedenits 1979), magnetically confined mountains (Melatos &
Payne 2005), or electron capture gradients (Ushomirsky, Cutler &
Bildsten 2000). The characteristic strain amplitude of a continuous
wave signal from a deformed neutron star is given by (Jaranowski,

where G is the gravitational constant; c is the speed of light; I, is
the principal moment of inertia aligned with the rotation axis; € is
the equatorial ellipticity that characterizes the extent of the neutron
star’s deformation; r is the distance to the detector; and f = 2v is
the gravitational wave frequency, taken to be twice the rotational
frequency v.

As a neutron star rotates, it may emit energy through electro-
magnetic and gravitational wave radiation, which extracts rotational
kinetic energy and in turn reduces its spin frequency. The spin-down
of a neutron star can be characterized as (Manchester, Durdin &
Newton 1985)

b=—Kv", (4)

where K is a constant, and the braking index n is obtained by
differentiating and rearranging equation (4):

vi
n= e (®)]

It is expected from theory that neutron stars have a braking index
ranging between 3 and 5, with 3 being the case when the neutron star
emits only electromagnetic radiation (Ostriker & Gunn 1969), and
5 being the case for only continuous wave emission through time-
varying mass quadrupole. Gravitational waves can additionally be
emitted through a current-type quadrupole moment due to r-modes,
which results in a breaking index of 7. There are measured braking
indices from pulsars that span orders of magnitude outside this range
(Johnston & Galloway 1999; Zhang & Xie 2012; Lower et al. 2021),
however this likely reflects the difficulty of accurately measuring
the second derivative i of the rotational frequency, or the impact of
glitches (Ho et al. 2020) or timing noise (Hobbs et al. 2004; Vargas
& Melatos 2023). We adopt the commonly accepted range of 3 < n
<5.

The amplitude of a continuous wave signal observed by a detector
from a neutron star will be modulated by the detector’s antenna
pattern. We henceforth assume the neutron stars to be biaxial rotors
with continuous wave frequency of f = 2v and amplitude given by
(Jaranowski, Krélak & Schutz 1998):

1
h(t) = ho{ ;A + cos® ) F4(t, ) cos[ + p(1)]

+costFy (1, ) sin[¢y +¢(t)]}, (6)

where hy is the characteristic strain amplitude; ¢(¢) is the phase
of the signal with initial value ¢; and cost is the orientation
angle, describing whether the neutron star is viewed face-on (spin-
axis along the line of sight, cost = =£1) or edge-on (spin-axis
perpendicular to the line of sight, cost = 0). The F . are the
detector response functions for + or x polarized gravitational waves
respectively, and are parametrized by the polarization angle . The
parameters A = (ho, cost, V¥, ¢) are commonly referred to as the
amplitude parameters.

The continuous wave signal of an isolated neutron star is expected
to be nearly monochromatic in the neutron star reference frame; with
respect to the detector reference frame, however, it is Doppler shifted
by the rotation and the orbital motion of the Earth. On the time-scale
of a day, the signal is modulated by the rotation of the Earth; while
on the time-scale of a year, the signal is modulated by the orbit of the
Earth around the Solar System Barycentre (SSB). (The velocity of
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the SSB relative to the neutron star could further affect the detected
frequency, although this effect is approximately constant on the time-
scale of measurements.) In the neutron star frame of reference, the
continuous wave signal phase is modelled, up to the second-order
time derivative, as (Jaranowski, Krolak & Schutz 1998)

b0 =2 | fe b 3 fe L+ 0G| ™

where 7 is time in the SSB frame; and f, f, f are the continuous
wave frequency and its first- and second-order time derivatives, or
spin-downs, at a reference time v = 0. The neutron star time 7 can
be converted to time ¢ in the detector’s frame of reference by

- A

7
() =1+ —, ®
c

where 7 is the position of the detector with respect to the SSB, and 7
is the unit vector pointing from the SSB to the neutron star. (Here we
ignore relativistic effects, and assume the neutron star is at rest with
respect to the SSB.) The parameters A = (f, f, f, A) are typically
referred to as the phase evolution parameters.

3 NEUTRON STAR POPULATION SYNTHESIS

Since no continuous waves have been detected from the Galactic
neutron star population, a simulated neutron star population must
realistically contain stars that emit electromagnetic and/or continuous
gravitational waves. Such a population has been previously investi-
gated by a number of authors (Palomba 2005; Knispel & Allen 2008;
Pitkin 2011; Wade et al. 2012; Woan et al. 2018; CieSlar et al. 2021;
Reed, Deibel & Horowitz 2021). In this work we utilize Monte Carlo
methods to simulate a neutron star population. We assign neutron star
parameters drawn from theoretical probability distributions, evolve
the neutron stars temporally, and use their final spin frequency to
simulate continuous wave signals.

3.1 Simulation method and parameters

The initial spin frequency v, can be obtained through the inverse of
the initial period Py. Three models for the initial period distribution
have been proposed (Palomba 2005; Knispel & Allen 2008). The
first model is a lognormal distribution with Py=5ms, 0 = 0.69,
and excludes all Py < 0.5ms. The second model uses the same
lognormal distribution but with all Py < 10ms set to 10ms; this
mimics the potential existence of r-modes in young neutron stars,
which increases the spin period to 10ms' once r-modes become
saturated. The third model simply uses a uniform distribution of
Py € [2, 15] ms; this is intended to accommodate both r-modes, and
the fall-back of matter after the supernova which decreases the period
through additional angular momentum (Watts & Andersson 2002).
A uniform initial period distribution was favoured by simulations of
Galactic binary neutron stars performed in Sgalletta et al. (2023). We
follow Palomba (2005) and Knispel & Allen (2008) and adopt the
third model for Py.

We assume an average birth rate of one Galactic neutron star
every 100 years, as evidenced by the observation of core-collapse
supernovae in the Galaxy (Diehl et al. 2006; Rozwadowska, Vissani
& Cappellaro 2021). An array of random variables drawn from
a Poisson distribution with rate A = 100 yr is generated and

1Reported to be between ~5 and ~ 15 ms in Andersson, Kokkotas & Schutz
(1999); taken to be 10 ms by Palomba (2005).
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cumulatively summed, and the values of the summed array are taken
as the ages of the simulated stars. Similar to Palomba (2005), an
upper bound of #,,x = 108 yr is used, as a compromise between
the computer memory required to store a simulated population and
realistic expectations of Galactic neutron star ages.

The magnetic field strength B and ellipticity € are chosen from
log-uniform distributions, in line with Wade et al. (2012), Knispel &
Allen (2008), and Reed, Deibel & Horowitz (2021). Unlike CieSlar
et al. (2021), we do not evolve the ellipticity in time since there is
no well-evidenced evolution model as yet. The magnetic field B is
bounded between 108G and 10'°G (Reisenegger 2001; Konar 2017).
The range for ellipticity € is 107 (Horowitz & Kadau 2009) to 10~°
(Woan et al. 2018). The moment of inertia /; is chosen uniformly
from the widely accepted range of [1, 3] x 10%¥kg m? (Mglnvik &
Dstgaard 1985; Worley, Krastev & Li 2008; Miao, Li & Dai 2022).

Instead of evolving neutron stars through the Galactic potential,
we populate the Galaxy with stationary neutron stars according to
a theoretical spatial distribution, similar to the approach used by
Reed, Deibel & Horowitz (2021). Current understanding suggests
that the spatial distribution of Galactic neutron stars follows a
Gaussian distribution in the radial direction and a double-sided
exponential (Laplace) distribution in the vertical direction (Binney
& Tremaine 2008; Faucher-Giguere & Loeb 2010). In the Galacto-
centric cylindrical frame (p, 0, z), the distribution for the radial
distance p is given by

_ 1 '072 )
plp) = o271 exp <_202) ’

with p > 0 and o = 5kpc. The vertical distribution is given by

1
p(z) = 220 exp (—*) s (10)
20 20

with zg € [0.5, 1]kpc for conventional stars (Binney & Tremaine
2008). In their work, Reed, Deibel & Horowitz (2021), however,
chose zg = 0.1, 2, 4kpc to investigate the effect of supernova kicks on
the distribution of neutron stars. We use zo = 2 kpc as a compromise
between a clustered vertical distribution (zo = 0.1kpc) and a spread-
out distribution (zg = 4 kpc). We use a uniform distribution of angle
0 between each neutron star and the Sun with respect to the Galactic
centre, with 6 = 0 for the Sun. With the location of the Earth assumed
to be coincident with the Sun (p. = 8.25 kpc, 6. = 0, ze = 0.02 kpc;
Humphreys & Larsen 1995; Reed, Deibel & Horowitz 2021), the
distance r between a neutron star at (o, 6, z) and the Earth can then
be calculated.

One can determine the spin-down v of a neutron star from the
conservation of energy, as follows. Assuming the total kinetic energy
budget from the star’s rotation is expended either in electromagnetic
or continuous wave emission gives (Lu et al. 2023)

(dE <dE) __(dE) .
E)EM—’_ 5 GW_ E rot. ( )

Due to the expected scale of the ellipticity € < 1, neutron stars can
be assumed to be nearly spherical, and hence the rotational energy
can be approximated as that of a rotating sphere (Wette et al. 2008):

E
(d—> =472 vv. (12)
dt rot

The energy emitted by a rotating magnetic dipole is (Ostriker &
Gunn 1969)

32n4u0m§,v4

<dE> _ _32714BzR6 sin? arv? , (13)
EM

dr 3c3 1o 3¢3
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where 1t is the vacuum permeability and R is the radius of the neutron
star. The component of the magnetic dipole moment perpendicular
to the rotational axis m1, can be related to the magnetic field strength
at the surface B by (Condon & Ransom 2016)?

1
m, = —BR*sina. (14)
o

The simulation assumes, for simplicity, that the magnetic dipole
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moment is entirely perpendicular to the rotation axis, i.e. sina =
1. The power emitted in continuous waves is given by (Ostriker &
Gunn 1969; Riles 2017)

dE 32G

<7> =202 2006 (15)
dr Jow 5¢5 %

Substituting equations (13) and (15) into equation (12) and rearrang-

ing yields the equation for the spin-down ¥:

51274GI,, , 5 82
_ 25 —
5¢3 331, o

B?sin® a R%v3. (16)

Wade et al. (2012) solve equation (16) and obtain an analytical
expression for the neutron star age ¢ as a function of its final and
initial spin frequencies, v and v, respectively:

1 V2 —? V21 4+ v2y)
t(v, vo) = {02724-)/]“ <272y)] ) (17)
2|yem| VoV Vo(l +v?y)
where
512714G1Z 82 .
Yew = _Tzez, YEM = —mBz SlI’lzC(RG (]8)

and y = yow/yEem are used for brevity.

To obtain the spin frequency evolution v(f) of a neutron star,
we need to invert equation (17). One approach is to numerically
solve equation (17) through root-finding; this method suffers from
poor convergence, however, due to the rapid decrease of v at small
t. Alternatively, one evaluates equation (17) at an array of sample
frequencies {v;} to obtain the corresponding time array {¢#}, then
interpolate to obtain a continuous function of v(f). This approach,
however, is limited by the range of sample frequencies [Viower, Vupper]»
which corresponds to a range for {#;} of [fiower = f(Vupper), fupper =
1(Viower)]- The upper bound for {v;} can easily be set as Vupper =
Vo, giving a lower bound figwer = H(Vypper) = 0. The lower bound
for {v;} may, however, be higher than the true value, i.e. fypper =
H(Viower) < tage, and hence interpolation cannot be performed. This
occurs for very old stars with large #,,. and very small v. While one
can simply lower vjower, doing so requires significantly more points
in {v;} (assuming linear sampling) and is generally inefficient.

We therefore employ a hybrid approach of Piece-wise Cubic
Hermite Interpolation (PCHIP) at small ¢ and root-finding using the
Levenberg—Marquardt algorithm at large ¢ to solve equation (17).
Fig. 1 illustrates this process. Interpolation is tractable when v(#,g)
€ [vg, 0.005v¢], which is the case for most neutron stars. For older
neutron stars with v(fe.) < 0.005v¢, root-finding is then used, starting
with the initial guess = figyer, v = 0.005vy.

3.2 Synthesized population

Fig. 2(a) summarizes the simulated population, containing 10° neu-
tron stars, in a P— P diagram. The shape of the simulated population is

2Note that equation (14) expresses my, in the standard SI units for a magnetic
moment of A m?. This equation differs by a factor of 1/ from the equivalent
expressions in Condon & Ransom (2016), which assume CGS units; and Lu
et al. (2023), which assume units of T m3.

+ Interpolation sample
1o - Root-finding solution \ |
— Age .

107 107 10"
Time (s)

Figure 1. An example of the spin frequency v() as a function of time. The
individual samples from interpolation are plotted in blue. The solution from
the root-finding algorithm is marked with a red cross, with the red dashed line
showing the extent to which the true age is outside the interpolation samples.
The true age is plotted as the green line.

a result of the various assumptions and limitations of the simulation
method, as described in Section 3.1, and can be understood through
Fig. 2(b).

The population may be partitioned into four regions in the P—P
space. The purple region in Fig. 2(b) contains mainly young neutron
stars; they do not have the time to spin down significantly, and hence
have higher final spin frequencies (smaller periods) and higher period
derivatives than older stars. This positions them in the upper left
region of the PP space. Conversely, older stars have more time to
spin down, so they have higher periods and lower period derivatives.
At a constant birth rate, there are more older neutron stars than young
ones, e.g. 10 times more neutron stars with age 107 yr than those with
age 10° yr. This results in a lack of simulated neutron stars in the
purple region and a high concentration of older neutron stars.

For a neutron star with negligible ellipticity, its spin-down is
dominated by electromagnetic radiation, and it follows a trajectory
similar to path (1) in Fig. 2(b). It has a slower spin-down of v oc —v3,
corresponding to P o« P~!, and will eventually occupy the green
region in Fig.2(b). A neutron star with both significant ellipticity
and a strong magnetic field initially radiates energy mostly through
continuous waves, then switches to mostly electromagnetic radiation
as the spin frequency v becomes smaller. Its braking index evolves
from n ~ 5 to n ~ 3, resulting in a nonlinear trajectory exemplified
by path (2).

The energy emission of a neutron star with significant ellipticity
and low magnetic field strength is dominated by continuous wave
radiation. Its trajectory is therefore steeper, with spin-down v o —v>,
or P oc P73, as shown by path (3) in Fig.2(b). It can reach a
slower P than stars dominated by electromagnetic radiation with
the same characteristic age. This results in the discontinuity in
the line of maximum 7, seen in Fig.2(b). This can also be seen
from equation (1), which yields different characteristic ages for stars
with different braking indices. Given their steeper gradient in the
P—P plane, these neutron stars are typically located in the red
region.

For a neutron star with both insignificant ellipticity and weak
magnetic field strength, its spin-down will be small, and there will be
no significant difference between its initial and final spin frequencies,
resulting in a short or even unobservable trajectory demonstrated by
path (4) and the stationary star next to it in Fig. 2(b). The blue region

MNRAS 527, 10564-10574 (2024)
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Figure 2. (a) P-P diagram of a representative synthesized population (coloured pixels) with observational data from the ATNF superimposed (crosses). The
top 10 neutron stars with the largest A are plotted as blue dots, from which we then perform parameter estimations and will be detailed in Section 4. A line of
constant magnetic field strength B is drawn in green; lines of constant ellipticity € are drawn in red; lines of constant characteristic age ¢ are drawn in purple.
(b) A schematic illustration of four different regions in the P—P diagram; see the text for details. Example evolution trajectories from t = 0 to t = tage for four
neutron stars are labelled (1) to (4).
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typically occupied by these neutron stars is defined by the minimum
and maximum initial period, and the minimum ellipticity.

To be precise, in Fig.2(b), the upper bound of the population
(green solid and dashed lines) is defined by the maximum magnetic
field strength By, through equation (2); the right boundaries of the
population (two purple solid lines) are defined by the maximum
age through equation (1) and the maximum ellipticity; the two solid
blue lines are defined by the minimum and maximum initial period;
and the lower bound of the population (solid red line) is defined by
the minimum ellipticity through equation (16). Inside the population
envelope, the red dashed line used to bound the blue region is defined
by the intersection of the blue line Py max and .« ; the intersection of
that line with Py min is then used to define the purple region; and the
red and green regions are then separated by the red dashed line defined
by €max. While these four regions provide a basic intuition regarding
the distribution of the population, they do not map one-to-one to
all neutron stars. For example, the majority of the continuous wave-
dominated (red) region, except near the boundary of 7, can still
contain neutron stars with predominantly electromagnetic radiation.

The Australian Telescope Network Facility (ATNF) hosts a
catalogue of observed pulsars (Manchester et al. 2005), which
are superimposed on the synthesized population in Fig.2(a). The
majority of the pulsars are clustered at the centre of the diagram,
occupying the electromagnetic radiation-dominated (green) region
described in Fig. 2(b). In addition, the majority of neutron stars are
observed at low frequencies f = 2v = 2/P < 10 Hz, where present-
day gravitational wave detectors have limited sensitivity. This is
consistent with the current lack of detection of continuous waves
through targeted searches of existing pulsars (Abbott et al. 2022b,
¢). Note that, while most of the observed pulsars coincide with the
simulated population, some pulsars have characteristic ages >10% yr.
This is a direct consequence of fyax = 108 yr set for the simulation.
Regardless, such discrepancies are not likely to drastically affect
the usefulness of the simulation in respect of the detectability of
continuous waves from young neutron stars.

A subset of pulsars is located in the lower left region of Fig. 2(a),
with P < 0.01s. These pulsars are millisecond pulsars and are
typically in binary systems. Even though they coincide with the
low P region of the simulated population, the underlying physics of
the two are different as we did not consider spin-ups due to accretion
in our simulation. However, as argued in Wade et al. (2012), while
we did not explicitly account for millisecond pulsars, we did not
exclude them either. An old neutron star that has spun-up through
recycling can be thought of as a young neutron star born with a high
spin frequency.

Similar to Fig. 2(a), Cieslar et al. (2021) plotted simulated neutron
stars with continuous waves detectable by the Einstein Telescope in
their fig. 7. Examining the P axis, we notice differences between the
two sets of results. The detectable neutron stars simulated by Cieslar
et al. have higher P, younger characteristic ages and therefore fall
in the young (purple) region in Fig.2(b). This may be due to their
assumption of a decay model for the ellipticity €, which means that for
older neutron stars their ellipticities, and consequently A, are lower.
In their model, therefore, only young neutron stars are detectable.

4 CONTINUOUS WAVE PARAMETER
ESTIMATION

We now investigate using continuous waves to infer properties of
neutron stars in the simulated population. Continuous waves may be
detected in various ways, such as through a targeted search of known
pulsars, or from a blind all-sky search. In this work we assume that

10569

a continuous wave signal has already been detected and sufficiently
localized to allow a targeted search with maximum sensitivity.’

Previous work has investigated the detectability of continuous
waves from a population of neutron stars. Wade et al. (2012)
compared the continuous wave amplitude with the estimated noise
curve of the detectors; a neutron star is considered detected if its
strain amplitude is above the noise curve. Wade et al. also derived
a theoretical framework to describe the detectability of continuous
waves from neutron stars, which holds for young neutron stars aged
< 107 years. Cieslar et al. (2021) took into account the spatial
position of the neutron star relative to the detector, calculated a
signal-to-noise (S/N) ratio, and assumed detection only for stars
with S/N > 11.4 (based on Abbott et al. 2004). Reed, Deibel &
Horowitz (2021) used the results from existing continuous wave
searches (Abbott et al. 2019; Dergachev & Papa 2020, 2021;
Steltner et al. 2021) to obtain a function of strain amplitude and
frequency, which is then applied to the simulated population and
the ATNF catalogue to determine detectability. Pitkin (2011) used
Markov Chain Monte Carlo (MCMC) methods to obtain the posterior
distributions of signal amplitude parameters, and constraints on the
possible range of gravitational quadrupole moment Q,, and magnetic
field strength B, assuming LIGO, Virgo, and Einstein Telescope
data. We simulate continuous wave signals from the synthesized
population and use Bayesian inference to estimate the continuous
wave signal parameters. From the posteriors of the parameters we
then infer the physical properties of the neutron stars and estimate
the errors from the inference.

4.1 Bayesian inference of simulated signals

From the simulated neutron star population, we select the 10 neutron
stars with the largest A for the parameter estimation study, which
are summarized in Table 1. We note that the first three neutron stars
in our population have h that exceeds the best upper limit of &y ~
1.1 x 107 ruled out by existing targeted searches using O3 data
(Abbott et al. 2022a). This could happen as we did not incorporate
such restrictions during the simulation. However, the continuous
wave frequency range in which the best upper limit is obtained is
f = 100-200 Hz. None of the top three stars have frequencies in this
range, so there is no strong contradiction with the result of existing
searches.

We utilize the CWInPy (CW Inference in Python, Pitkin 2022)
package and perform software injections to simulate continuous wave
signals. Currently, the only third generation detector supported by
CWInPy is the D configuration of the Einstein Telescope (ET-D).
Hence, we limit the scope of this work to LIGO and ET-D. We
assume Gaussian noise with a standard deviation defined by the
amplitude spectral density specific to each detector at the continuous
wave signal frequency f = 2v. Comparing the sensitivities of LIGO
(Betzwieser 2021; Kissel 2021) and ET-D (Hild et al. 2011; Evans,
Harms & Vitale 2016), the latter will have noise amplitude spectral
density ~10 times smaller than that of LIGO, resulting in higher
signal-to-noise ratios.

For LIGO, we simulate detector data at times identical to the
real data recorded by each of the two LIGO detectors (Hanford
and Livingston) across all observation runs, O1-O3 (Abbott et al.
2021a, 2023). For the Einstein Telescope, we perform two separate

3This continuous wave signal is assumed to be given by the signal models
defined in equations (6) and (7), have positive f, and no unaccounted-for
frequency modulation or evolution.
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Table 1. Continuous wave parameters and physical properties of the ten simulated neutron stars with the largest continuous wave strain amplitude £.

Name ho cost W o f f f n I, € mp r Age
[Hz] Hzs™']  [Hzs™] [kgm’] [Am?] [kpc] [yr]

J1749-0156 22 x 1003 —056 071 077 44x10"2 —14x10712 23x 1072 486 23x10™ 15x1077 9.6x 103 031 2.0 x 1016
J1746-0156 1.7 x 1073 —0.69 040 220 2.1 x 1072 —40x 107 38x 107 500 L1x10t¥ 22x107 4.0x 1022 007 4.2 x 1077
J1829-0110 13 x 1073 098 032 174 64x102 —13x1071° 13x1072 500 27x10™ 50x1077 15x 102 443 3.9 x 10t
J1907-0159 8.4 x 10726 0.61 0.10 3.02 63x 1072 —23x107"0 40x 1072 475 26x 1078 68 x 1077 99 x 10*>* 867 1.8 x 107
11827-0124 7.8 x 10726 —092 079 301 39x10"2 —37x 107" 18x 1072 496 28x 10T 92x 1077 34 x 10T 533 45 x 10t™
J1746-0157 58 x 10726 —0.95 145 181 49x 1072 —16x 10713 27x 1072 497 19x 10" 42x107%® 1.1 x 103 035 6.6 x 107%
J1716-0204 55x 10726 —077 148 197 30x102 —31x1072 1.6x 1072 500 29x 10" 51x1077 19x 102 250 5.7 x 10705
J1747-0158 53 x 10726 —0.11 099 0.65 1.1 x 1072 —25x107% 27x107° 499 3.0x10t¥ 53x107 36x 10" 039 1.8 x 107
J1729-0144 52 x 10726 0.3 047 077 33 x102 —88x 1071 12x1072 500 27x10™ 22x1077 41x 102 131 1.7 x 10106
J1704-0203 5.0 x 1072 071  0.88 296 45x 1072 —99x 10712 1.1 x 107 500 14x10"¥ 47x107 19x 102 285 1.9 x 10t%
analyses with gap-less detector data spanning 2 years and 5 years 5
respectively. The 2-year analysis is approximately the combined o = 2% (20)
effective observation time of LIGO from O1 to O3b, while the 5- S TS
year analysis is similar to the total amount of time spanned by these ) 375D? 5n? 3n(4n—7) 420f 2
observation runs (2015-2020), during which the continuous wave On = 72 <16 273 2715 FAT7 ) : @n
signal can evolve.

The amplitude parameters A and frequency parameters A of Here,
the simulated neutron stars are used to generate continuous wave . VSi(H 22)

signals in CWInPy. Each simulated signal is then heterodyned and
down-sampled to a frequency of 1/60 Hz (Dupuis & Woan 2005).
We perform parameter estimation of both amplitude and frequency
parameters, namely hg, cos ¢, ¢g, ¥, f, f, f. To obtain the posterior
of a parameter, one requires the likelihood, the evidence, and the
prior. The likelihood comes from the Gaussian noise assumption, and
we use nested sampling (Skilling 2004, 2006, see Ashton et al. 2022
for an intuitive illustration) to evaluate the evidence and obtain the
posterior. The nested sampling scheme is implemented in CWInPy
via the Bayesian Inference Library (BILBY, Ashton et al. 2019)
which uses dynesty (Higson et al. 2019; Speagle 2020) for nested
sampling.

The choice of priors represents the initial assumptions made for the
parameters, which in turn affects the performance of the sampler and
consequently the estimated posteriors. The prior on A is chosen to
be a uniform distribution [0, 1072*] to include any likely continuous
wave strain amplitude; in the simulated population, /g < 2 x 1072,
The value of cos ¢ is unknown a priori and is thus chosen uniformly
over [ — 1, 1]. The prior on ¢ is chosen only between [0, ], as in
CWInPy ¢ is the initial rotational phase offset, and will cover the
full phase range when converted to a gravitational wave frequency via
f="2v. The prior on ¥ is set to [0, /2] to account for the degeneracy
in ¢ given by the transformation of ¥ — v + /2 (Jones 2015).

For targeted searches, the phase parameters f =2v, f, f are
assumed to be roughly determined based on previous observations,
e.g. from electromagnetic detection of a known pulsar, or from
follow-up of a continuous wave candidate found in an all-sky
search. To ensure a physical braking index, we substitute f for n
using equation (5) and impose the constraint 3 < n < 5. We use
uniform prior distributions on f, f,n centred at the true values
with single-side widths 30, where o is obtained from the inverse
Fisher information matrix (Jaranowski & Krélak 2010; Lu et al.
2023). The priors are chosen to be broad enough to not restrict the
posteriors produced by the Bayesian sampler, but narrow enough to
allow convergence of the posteriors. Explicitly, o for each parameter
is given by:

, D 1875
of = — s
I m2 1673

19)
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ho

is the sensitivity depth, which is related to the signal-to-noise ratio p?
by (Behnke, Papa & Prix 2015; Dreissigacker, Prix & Wette 2018)
g AMT_ 4T

25 Sp 25 D?
T is the observation time; and S, is the power spectral density of the
strain noise in the detector.

Fig. 3 shows a corner plot of the prior and posterior distributions
of hy, f, f, n for continuous waves from a simulated neutron star in
ET-D data with an observation time of 2 yr. The 1D distributions for
each parameter are shown along the diagonal; the off-diagonal plots
show the 2D distributions over pairs of parameters. We plot relative
errors £ defined by

A— Atruth
Atruth

(23)

E(A) = , (24)

i.e. the true values of each parameter are located at £ = 0. The
convergence of the posteriors is consistent with our prior assumption
of the detectability of continuous waves, in particular by the Einstein
Telescope. Fig. 3 also highlights the difficulty in accurately estimat-
ing n; we will see in Section 4.2 that this limitation dominates the
uncertainty in inferring the stellar properties.

4.2 Inferring physical properties

Starting with equation (16), Lu et al. (2023) developed a theoretical
framework where the continuous wave signal parameters kg, f, f s f
and the distance to the neutron star r can be used to infer the physical
properties of the star: the principal moment of inertia I,,, the ellipticity
€, and the perpendicular magnetic dipole moment 1,:

K 8 2h2
I, = M’ (25)
87*G2f(3 —n)
_ 272G f(3 —n) 26)
KGWc4rh0f3 ’
“rh K -5
my = c'rhy cw(n )’ 7
4uom*Gf \l Kem(3 —n)
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Figure 3. Corner plot of the prior (blue) and posterior (red) distributions of
parameter estimation results for an example simulated neutron star (labelled
J1704-0203). The ET-D detector with observation time of 7' = 2 yr is used.
Relative errors £ of the posteriors are shown, with true values at £ = 0. The
vertical dashed lines in the 1D histograms represent 1o confidence, and the
three contours in the 2D histograms represent 3. Note that the distributions
of E(ho) is zoomed in to make the posterior distribution visible.

where Kgy = 272/3¢3 g and Kgw = 32Gm*/5¢°. We assume a 20
per cent error in the measurement of 7 (i.e. r ~ r'™"(1 + 0.2Z), where
Z is drawn from the standard normal distribution) which is expected
to be achievable by the upcoming radio telescope Square Kilometre
Array (Smits et al. 2011).

Fig.4 shows example corner plots of the inferred physical
properties, with the posterior distribution of the braking index n
positioned at the top right. Comparing Figs4(a) and (b), there is
little difference between the posteriors inferred using LIGO versus
ET-D with T = 2 yr of data. As seen in Fig. 3, fand f are very well
constrained, whereas f o n is not: the posteriors of n are uniform
over the range 3-5. (In the 1D histogram of n, n™" = 5, and &
ranges from £(n = 3) = —0.4 to E(n = 5) = 0.0). This means that
the majority of the uncertainty in the inferred parameters stems from
the uncertainty in f. Since n in both Figs4(a) and (b) is badly
estimated, the uncertainties in I, €, m, are similar for both LIGO
and ET-D at 7 = 2 yr. With an observation time of 7 = 5 yr, however
(Fig.4c), 0, [equation (21)] is small enough so that the prior on 7 is
a narrow subset of [3,5], and consequently the uncertainty on /., and
€ is improved.

The inference of m, is challenging due to the behaviour of
equation (27). Fig. 5 plots the theoretical model for m, as a function
of f (or equivalently n). The posterior of n is shown in red, and the
true m;, is plotted in green. Note the asymptotic behaviours of m, at
n = 3 and 5; consequently, when a neutron star has n & 5, any small
deviation of the estimated n will drastically affect the estimation of
my,. Therefore, while the posterior of mj, is supposed to contain the
true value since the posterior of n contains the true value, in reality,
the fact that we obtain the posterior through sampling, coupled
with the asymptotic behaviour of m,, makes it unlikely that any
sampled n will be close enough to n'™" to produce a good estimate
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Figure 4. Corner plots for the distributions of the logarithm of the principal
moment of inertia I, ellipticity €, and perpendicular magnetic dipole moment
mp. Results are for the example simulated neutron star J1704-0203 and (a)
advanced LIGO for the duration of O1-03, (b) ET-D with 7 = 2 yr, and (c)
ET-D with T = Syr.
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Figure 5. Theoretical model by Lu et al. (2023) of m;, as a function of fon
top of the posterior distribution of n for ET-D at T = 5 yr. The true value is
plotted in green.

of my,. This is unsurprising: given that we are inferring neutron star
properties from continuous wave detections, we expect most of the
detected neutron stars to have a continuous wave-dominated spin-
down with n & 5. As the magnetic dipole moment is related to the
strength of the electromagnetic radiation, which is not the dominant
form of radiation for these stars, the amount of energy emitted via
electromagnetic radiation, and hence the ability to infer 1, through
this method, is limited for neutron stars with n &~ 5. Similarly, the
skewed distributions of I,; and € in Figs4(a) and (b) are also a
consequence of the theoretical framework [equations (25) and (26)]
and the posterior on n. Both equations have asymptotes at n = 3,
with lim,, 3+ I;; = 400 and lim,_,3+ € = 0. As the posterior on n
approaches 3, therefore, I, and € will increasingly diverge from their
true values. Unlike mp, however, a much higher fraction of posterior
samples (when n > 3) produce good estimates of I,; and €; as seen
in Fig. 4, the highest densities in the I,,—€ distributions coincide with
the true values for both LIGO and ET-D.

InFig. 6, we show the inferred physical properties of the 10 neutron
stars with the largest h in the simulated population, in descending
order of hy. The posterior distributions are shown in the form of
violin plots, in which the widths of the ‘violins’ give the posterior
probability densities. The red lines represent the highest density
intervals (HDI) of the distributions, defined as the smallest possible
90 per cent credible intervals, i.e. the smallest bounds we can place
on the physical properties. The varying sizes of the distributions are
due to the different extents to which »n is constrained. For neutron
stars where n is well constrained, the uncertainties in the inferred
properties are also smaller. This is confirmed in Fig. 7: for neutron
stars with higher f, the uncertainties in the inferred parameters, as
quantified by the relative error £, are smaller. This can be understood
by considering the continuous wave signal searched for by CWInPy.
The contribution of f to the frequency evolution of a continuous
wave is more pronounced if f is larger, and hence CWInPy can
more readily constrain larger f.

From Fig.7 we see that, for five years of continuous wave
observations using ET-D, the physical properties of the 10 neutron
stars in the synthesized population have errors that depend on the
estimation of n, with f being a contributing factor. For neutron stars
with small £, I.. can be inferred with an error of ~ 100 per cent
for point estimates using the median. The 90-th percentile credible
interval yields a maximum error of ~ 1000 per cent. For the
ellipticity €, a point estimate with relative error ~ 50 per cent can
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Figure 6. Violin plots showing the distributions of (a) /.., (b) €, and (c) m,
for the parameter estimations with CWInPy on ten neutron stars, arranged
in descending order of ip. The 90 per cent highest density intervals from
each run are shown in red; the medians are shown in blue; and true values are
shown as green crosses. ET-D is used with 7 = 5 yr.

be made, and the 90th percentile credible interval giving a maximum
error of ~ 100 per cent. For neutron stars with more significant £,
the median of the posterior of I, is accurate enough to be within
~ 10 per cent of the true value, while the 90-th percentile credible
interval gives a maximum error of ~ 100 per cent. The ellipticity €
can be estimated using median with a relative error of ~ 5 per cent,
and a maximum error from the credible interval of ~ 50 per cent.
Few alternative methods exist to measure /,;. Separate measurement
of neutron star mass and radius can provide a measurement of I,
but measuring these two properties simultaneously is challenging
(Steiner et al. 2015; Miller et al. 2019). Another technique measures
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Figure 7. Magnitudes of relative errors in I, (filled markers) and € (hollow
markers) plotted against f for ET-D with T = 5 yr. The maximum errors of
the 90 per cent HDI are shown in red, and that of medians are shown in blue.

I, through the higher-order relativistic correction to the periastron
advance of rapidly spinning binary pulsars (Damour & Schieer
1988). To date, this approach can only be applied to the double pulsar
PSR J0737-3039, with the measurement yielding errors of ~10-20
per cent (Miao, Li & Dai 2022), comparable with our point estimates
of ~ 10 per cent for neutron stars with large f. So far, no alternative
approach to measuring € is available other than through a continuous
wave detection (Lu et al. 2023). We are unable to accurately infer
the perpendicular magnetic dipole moment, but it may be inferred
through alternative methods, such as from pulsars directly through
the measurement of frequency and spin-down (Kramer 2005).

5 DISCUSSION

This paper presents an analysis of the capability of LIGO and ET
to measure physical properties of neutron stars using continuous
gravitational waves. We first synthesized a population of neutron
stars using Monte Carlo techniques, performed parameter estimation
using Bayesian inference on the ten gravitationally loudest simulated
continuous wave signals, and finally inferred their physical proper-
ties, namely the stellar moment of inertia /;, equatorial ellipticity e,
and the perpendicular magnetic dipole moment n1,,.

Targeted searches for continuous waves from the synthesized
neutron stars produced well-constrained posteriors for the continuous
wave strain amplitude hy, frequency f, and its first-order time
derivative f , for both LIGO and ET-D. The inference of the braking
index n proved challenging, and was the cause of the majority
of the uncertainty in the inference of the physical properties I,
€, mp, but this can be improved with longer observation periods.
Using the ET-D configuration with five years of observations,
depending on estimation of n, which is related to the size of
f, 90-th percentile credible intervals can be placed on I.. and
€ with errors of ~ 100-1000 per cent and ~ 50-100 per cent,
respectively; and point estimates using median can be made with
errors of ~ 10-100 per cent and ~ 5-50 per cent, respectively.
The perpendicular magnetic dipole moment could not be properly
inferred for neutron stars with n & 5 due to the asymptotic behaviour
of equation (27).

Lu et al. (2023) found that measurement of I.., €, and m,, with
relative errors of <27 per cent, might be achievable with continuous
waves. In comparison, our headline results (summarized above) are
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somewhat less promising for the accurate estimation of these parame-
ters. The reason for this discrepancy is readily apparent from Table 1;
the 10 neutron stars used for parameter estimation all have relatively
small spin-downs (| f| < 1 x 107"9Hzs™!, | f] < 1 x 1072?Hzs72)
compared to what is typically assumed for continuous wave searches.
Indeed, as seen in fig. 4 of Lu et al. (2023), the |f| of the 10
neutron stars are similar to (or even smaller than) the smallest
|/l ~1x10"""Hzs™! covered by Lu et al. (2023), where errors
were found to be worst (£ 2 30). Our results, therefore, reaffirm the
intuition that the detection, not only of continuous waves, but from
a relatively luminous neutron star with high spin-down, would be
required for any useful estimation of its physical parameters.

Future work could improve upon some of the simplifying as-
sumptions used in the neutron star population synthesis, such as
performing n-body simulations of the spatial evolution of the neutron
stars through the Galactic potential, or adopting evolution models for
the ellipticity and the magnetic field strength. In addition, directed or
all-sky searches could be performed on the synthesized population to
provide a more comprehensive assessment of the detection prospects
for LIGO and the Einstein Telescope.
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