15 research outputs found

    Mechanistic studies on DNA damage by minor groove binding copper–phenanthroline conjugates

    Get PDF
    Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes

    DNA cleavage and binding selectivity of a heterodinuclear Pt–Cu(3-Clip-Phen) complex

    Get PDF
    The synthesis and nuclease activity of a new bifunctional heterodinuclear platinum–copper complex are reported. The design of this ditopic coordination compound is based on the specific mode of action of each component, namely, cisplatin and Cu(3-Clip-Phen), where 3-Clip-Phen is 1-(1,10-phenanthrolin-3-yloxy)-3-(1,10-phenanthrolin-8-yloxy)propan-2-amine. Cisplatin is not only able to direct the Cu(3-Clip-Phen) part to the GG or AG site, but also acts as a kinetically inert DNA anchor. The nuclease activity of this complex has been investigated on supercoiled DNA. The dinuclear compound is not only more active than Cu(3-Clip-Phen), but is also capable of inducing direct double-strand breaks. The sequence selectivity of the mononuclear platinum complex has been investigated by primer extension experiments, which reveal that its interaction with DNA occurs at the same sites as for cisplatin. The Taq polymerase recognizes the resulting DNA damage as different from that for unmodified cisplatin. The sequence-selective cleavage has been investigated by high-resolution gel electrophoresis on a 36-bp DNA fragment. Sequence-selective cleavages are observed in the close proximity of the platinum sites for the strand exhibiting the preferential platinum binding sites. The platinum moiety also coordinates to the other DNA strand, most likely leading only to mono guanine or adenine adducts

    Targeting of T/Tn Antigens with a Plant Lectin to Kill Human Leukemia Cells by Photochemotherapy

    Get PDF
    Photochemotherapy is used both for solid tumors and in extracorporeal treatment of various hematologic disorders. Nevertheless, its development in oncology remains limited, because of the low selectivity of photosensitizers (PS) towards human tumor cells. To enhance PS efficiency, we recently covalently linked a porphyrin (TrMPyP) to a plant lectin (Morniga G), known to recognize with high affinity tumor-associated T and Tn antigens. The conjugation allowed a quick uptake of PS by Tn-positive Jurkat leukemia cells and efficient PS-induced phototoxicity. The present study was performed: (i) to evaluate the targeting potential of the conjugate towards tumor and normal cells and its phototoxicity on various leukemia cells, (ii) to investigate the mechanism of conjugate-mediated cell death. The conjugate: (i) strongly increased (×1000) the PS phototoxicity towards leukemic Jurkat T cells through an O-glycan-dependent process; (ii) specifically purged tumor cells from a 1∶1 mixture of Jurkat leukemia (Tn-positive) and healthy (Tn-negative) lymphocytes, preserving the activation potential of healthy lymphocytes; (iii) was effective against various leukemic cell lines with distinct phenotypes, as well as fresh human primary acute and chronic lymphoid leukemia cells; (iv) induced mostly a caspase-independent cell death, which might be an advantage as tumor cells often resist caspase-dependent cell death. Altogether, the present observations suggest that conjugation with plant lectins can allow targeting of photosensitizers towards aberrant glycosylation of tumor cells, e.g. to purge leukemia cells from blood and to preserve the normal leukocytes in extracorporeal photochemotherapy
    corecore