918 research outputs found

    Steps and facets at the surface of soft crystals

    Full text link
    We consider the shape of crystals which are soft in the sense that their elastic modulus μ\mu is small compared to their surface tension γ\gamma, more precisely μa<γ \mu a < \gamma where aa is the lattice spacing. We show that their surface steps penetrate inside the crystal as edge dislocations. As a consequence, these steps are broad with a small energy which we calculate. We also calculate the elastic interaction between steps a distance dd apart, which is a 1/d21/d^2 repulsion. We finally calculate the roughening temperatures of successive facets in order to compare with the remarkable shapes of lyotropic crystals recently observed by P. Pieranski et al. Good agreement is found.Comment: 8 Pages, 1 Figure. To appear on Eur. Phys. Journal.

    Detection of ultrafast oscillations in Superconducting Point-Contacts by means of Supercurrent Measurements

    Get PDF
    We present a microscopic calculation of the nondissipative current through a superconducting quantum point contact coupled to a mechanical oscillator. Using the non-equilibrium Keldysh Green function approach, we determine the current-phase relation. The latter shows that at certain phases, the current is sharply suppressed. These dips in the current-phase relation provide information about the oscillating frequency and coupling strength of the mechanical oscillator. We also present an effective two-level model from which we obtain analytical expressions describing the position and width of the dips. Our findings are of relevance for nanomechanical resonators based on superconducting materials.Comment: 8 pages, 5 figures. Published in Phys. Rev.

    A crystal mush perspective explains magma variability at la fossa volcano (Vulcano, Italy)

    Get PDF
    The eruptive products of the last 1000 years at La Fossa volcano on the island of Vulcano (Italy) are characterized by abrupt changes of chemical composition that span from latite to rhyolite. The wide variety of textural features of these products has given rise to several petrological models dealing with the mingling/mixing processes involving mafic-intermediate and rhyolitic magmas. In this paper, we use published whole-rock data for the erupted products of La Fossa and combine them in geochemical and thermodynamic modelling in order to provide new constrains for the interpretations of the dynamics of the active magmatic system. The obtained results allow us to pic-ture a polybaric plumbing system characterized by multiple magma reservoirs and related crystal mushes, formed from time to time during the differentiation of shoshonitic magmas, to produce latites, trachytes and rhyolites. The residing crystal mushes are periodically perturbated by new, fresh magma injections that, on one hand, induce the partial melting of the mush and, on the other hand, favor the extraction of highly differentiated interstitial melts. The subsequent mixing and mingling of mush-derived melts ultimately determine the formation of magmas erupted at La Fossa, whose textural and chemical features are otherwise not explained by simple assimilation and fractional crystallization models. In such a system, the compositional variability of the erupted products reflects the complexity of the physical and chemical interactions among recharging mag-mas and the crystal mushes

    Anaerobic Digestion of Spoiled Milk in Batch Reactors: Technical and Economic Feasibility☆

    Get PDF
    Abstract The economic feasibility of the energy conversion through anaerobic digestion of spoiled milk was assessed for the microscale biogas production and heating value was determined experimentally on a pilot plant with a mixture of spoiled milk and an inoculum previously optimized with Anaerobic Biomethanation Potential tests. Results shows that the feasibility of a 100 kWel plant is characterized by a quite short return time of the investment. Considering a discount rate of 5% and a timespan of investment equal to 20 years, payback period is equal to 8-9 years, Net Present Value is equal to 806,903 € and Internal Rate of Return is equal to 16%

    Superconductivity with hard-core repulsion: BCS-Bose crossover and s-/d-wave competition

    Full text link
    We consider fermions on a 2D lattice interacting repulsively on the same site and attractively on the nearest neighbor sites. The model is relevant, for instance, to study the competition between antiferromagnetism and superconductivity in a Kondo lattice. We first solve the two-body problem to show that in the dilute and strong coupling limit the s-wave Bose condensed state is always the ground state. We then consider the many-body problem and treat it at mean-field level by solving exactly the usual gap equation. This guarantees that the superconducting wave-function correctly vanishes when the two fermions (with antiparallel spin) sit on the same site. This fact has important consequences on the superconducting state that are somewhat unusual. In particular this implies a radial node-line for the gap function. When a next neighbor hopping t' is present we find that the s-wave state may develop nodes on the Fermi surface.Comment: 10 pages, 9 fig

    i rexfo life an innovative business model to reduce food waste

    Get PDF
    Abstract Every year the food produced and wasted consumes a volume of water equal to 250 km3, requires around 30% of the world agricultural land, and it is responsible for the emission of 3,3 billion tons of greenhouse gases. The direct economic consequences of food waste are ranging around 750 billion dollars per year (FAO source). i-REXFO designs an innovative business model with the objective of reducing significantly the amount of landfilled food waste. The actions are economically sustained by public incentives, tax reductions and private revenues from energy valorization of residual food waste. Uptaking the good practices from other EU countries (Denmark) the project will develop a tool to design the integrated model, optimize it from a technical, economic and environmental point of view and transfer it to other EU regions. i-REXFO will increase consumer awareness on food waste reduction in retail malls and HORECA while facilitating the sale and donation to charities and food banks of close to expiration and aesthetically not adequate food; it will also remove the barriers that hamper the use of food residues in biogas plants. The actions are economically sustained from energy valorization of food waste in biogas plant that use the digestate as fertilizer, closing the cycle. I-REXFO will achieve an overall reduction of 17000 tons/year of food waste landfilled during the project duration and in the after life phase. This will correspond to an overall reduction of 41000 tons of CO2 equivalent emissions

    Geometric phase for mixed states: a differential geometric approach

    Get PDF
    A new definition and interpretation of geometric phase for mixed state cyclic unitary evolution in quantum mechanics are presented. The pure state case is formulated in a framework involving three selected Principal Fibre Bundles, and the well known Kostant-Kirillov-Souriau symplectic structure on (co) adjoint orbits associated with Lie groups. It is shown that this framework generalises in a natural and simple manner to the mixed state case. For simplicity, only the case of rank two mixed state density matrices is considered in detail. The extensions of the ideas of Null Phase Curves and Pancharatnam lifts from pure to mixed states are also presented.Comment: 22 pages, revtex
    • …
    corecore