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We present a microscopic calculation of the nondissipative current through a superconducting quantum point
contact coupled to a mechanical oscillator. Using the nonequilibrium Keldysh Green function approach, we
determine the current-phase relation. The latter shows that at certain phases, the current is sharply suppressed.
These dips in the current-phase relation provide information about the oscillating frequency and coupling strength
of the mechanical oscillator. We also present an effective two-level model from which we obtain analytical
expressions describing the position and width of the dips. Our findings are of relevance for nanomechanical
resonators based on superconducting materials.
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I. INTRODUCTION

The observation of a small, albeit macroscopic, mechanical
oscillator in the ground state1 constitutes a milestone on the
road leading to the experimental verification of quantum deco-
herence in mechanical systems. Detection and manipulation of
such nanomechanical oscillators are still a challenging issue,
and several approaches are being pursued by experimentalists.
A nonexhaustive list of devices includes electromagnetic
cavities in the microwave range,2,3 superconducting qubit,4

optical cavities,5–7 single-electron transistors,8,9 and tunnel
junctions.10 But in order to tackle fundamental questions of
decoherence in macroscopic systems,11 still further improve-
ments are necessary, thus motivating the investigation of new
directions for the detection of nanoelectromechanical systems.

In Ref. 10 the modulation of the tunneling quantum
amplitude in an atomic point contact has been exploited to
detect the mechanical fluctuations of a doubly clamped beam.
The current through the point contact is modulated by the
change in the distance between the oscillating beam and a fixed
reference metal. It has been shown that this kind of detector
can reach the quantum limit of displacement detection12,13 and
can be allowed, in the experiment of Ref. 10, to measure with
a good accuracy the resonating frequency of the oscillator and
its Brownian motion.

It seems feasible to reproduce a similar experiment with
superconducting leads instead of normal metal ones. In this
case the atomic point contact forms a Josephson junction
between the mobile and fixed leads. Josephson current in
similar tunnel junctions has been demonstrated by using a
superconducting scanning tunneling microscope (STM) tip.14

Also the current phase relation has been measured in Josephson
junctions consisting of atomic point contacts15,16 and carbon
nanotubes.17 An alternative system with a similar modulation
of the tunneling amplitude induced by a mechanical displace-
ment is a suspended carbon nanotube contacted between two
superconductors in the Fabry-Perot regime.

From the theoretical point of view, the effect of the
modulation of the tunneling matrix element due to mechanical
oscillations in Josephson junctions has been considered in the

literature, but only in the adiabatic limit of slow variation
of the tunneling amplitude.18,19 This limit is adapted to the
tunneling case where the only relevant energy scale is the
superconducting gap �. Thus for oscillating frequencies much
smaller than �/h̄ (typically of the order of tens of GHz), the
time dependence of the oscillator can be treated adiabatically
with a correction proportional to the time derivative of the
displacement.18

The situation is different for an atomic point contact
consisting of few conducting channels, some of them with
high transmission. It is well know20,21 that in such junctions
the supercurrent is controlled by the occupation of the
Andreev bound states (ABSs) with energies depending on
the transmission and phase difference across the contact. In
the case of a unique conducting channel, there are only two
Andreev states with energy

±ωA(φ) = ±�
√

1 − τ sin2(φ/2) , (1)

where φ is the phase difference between the two supercon-
ductors, and τ (0 � τ � 1) the transmission coefficient of
the channel. For τ � 1 (tunneling limit) the spectrum of the
two-level system as a function of the phase difference is almost
flat with a level spacing between the channels equal to 2�. In
the opposite limit, for τ = 1, the level spacing between the
ABSs depends on φ and shows a minimum at φ = π where
the energy splitting vanishes. Thus, the energy level splitting
2ωA spans the range 2� � 2ωA � 2�

√
1 − τ and may be

equal to the mechanical resonating frequency. Moreover, for
large enough phases the two Andreev levels can be deep inside
the superconducting gap, and an effective two-level model
description for the contact that neglects the continuum part of
the spectrum can be used.22

A two-level system is the simplest example of a quantum
detector.23 By tuning the energy splitting between the two
levels to a radial frequency ω0, one can measure the transition
rates between the two levels induced by the coupling to
an external system and thereby determine the fluctuation
spectrum at ω0. For the two-level system formed by the
Andreev states, it has been predicted very recently24,25 that
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under microwave irradiation of radial frequency ω0, the
current-phase relation of the Josephson junction show dips at
values of φ that are solutions of the equation h̄ω0 = 2ωA(φ).
At these values of the phase the electromagnetic field induces
transitions between the two Andreev levels, and the resulting
current vanishes at resonance. The question thus naturally
arises if a similar mechanism can be used to detect mechanical
oscillations.

In this paper we explore the effect of fast modulation of the
transparency of a single channel quantum point contact on the
current-phase relation (CPR). The origin of that modulation
is the vibration of the contact, with oscillations in the range
of hundreds of MHz. We show that if the frequency of the
mechanical oscillator is of the order of the spacing between
the Andreev levels, then the CPR differs drastically from
the one obtained in the adiabatic case. In analogy with the
microwave irradiation, we find that the modulation of the
tunnel amplitude leads also to the appearance of dips in
the current-phase relation that, for typical experimental situa-
tions, could be extremely sharp. Measurement of the current
phase relation could thus be used to detect the resonating
frequency of the mechanical oscillator. In order to describe
this effect it is clear that one has to go beyond the adiabatic
approach of Ref. 18 in order to take into account the transitions
between ABSs.

The plan of the paper is the following. In Sec. II, we first
introduce a microscopic Hamiltonian to describe the super-
conducting point contact in the presence of electromechanical
vibrations. From this model Hamiltonian, we compute the
supercurrent through the junction in two ways. In a first
approach, Sec. III A, we use an effective two-level model
similar to the one derived in Ref. 22. Within this model,
we derive analytical expressions for the current and for the
occupation of the Andreev states. Second, in Sec. III B, we
calculate the supercurrent with the help of the Keldysh Green
functions and check the validity of the two-level model. In
particular we present numerical solutions for the current phase
relation. In Sec. IV we discuss the use of this method to detect
mechanical oscillations and present the conclusions in Sec. V.

II. MODEL

We consider a model for a Josephson junction where the
normal state electronic hopping term is modulated in time at
a given frequency. An example of the system considered is
depicted in Fig. 1. It consists of two bulk superconductors,
characterized by a BCS gap �, connected by a junction
whose dimensions are assumed much smaller than the su-
perconducting coherence length. This model can describe,
for example, the contact between a STM superconducting
tip and a bulk superconductor, or a quantum point contact
in break junctions.15 The same model can also describe a
quite different system: a suspended carbon nanotube between
superconductors in the Fabry-Perot regime for a transparent
barrier.26 Different groups have realized suspended carbon
nanotubes with good mechanical properties.8,9 Also transpar-
ent contacts between superconductors and nanotubes forming
superconducting quantum interference devices (SQUIDs) have
been observed.17,27 The motion of the nanotube induces a

FIG. 1. Schematic representation of a Josephson junction. We
assume that the distance between the two leads is modulated
periodically at a frequency ω0. This induces a weak modulation of
the quantum hopping matrix element v(t).

modulation of the gate potential seen by the nanotube and
thus modulates the transparency of the electronic mode. Note
also that the mechanical coupling considered here is different
from the one investigated in Ref. 28 for a suspended carbon
nanotube in presence of magnetic field.

We will assume that the phase difference between the left
(L) and right (R) superconducting leads, φ = φL − φR , is time
independent, i.e., there is no voltage drop at the junction. We
consider the case of a single-channel superconducting point
contact which can be described, for instance, by the following
tight-binding Hamiltonian29 (we set the units h̄ = e = kB = 1)

Ĥ (t) =
∑

X=L,R

ĤX + V̂EM (t) . (2)

Here ĤX=L,R are the Hamiltonians of the isolated X = L,R

leads given by

ĤX(t) =
∑
i∈X

ψ
†
i �σ̂xψi +

∑
<i,j>∈X

{ψ†
i v̂0ψj + H.c} , (3)

where v̂0 is the hopping matrix between next-nearest-neighbor
sites within the isolated X = L,R superconductors. We use
the standard notation for the Pauli matrices in Nambu space
{σ̂x,σ̂y,σ̂z}. The second term in the right-hand side of Eq. (2)
describes the (time-dependent) hopping between the leads,
defined as

V̂EM (t) = ψ
†
Lv̂(t)ψR + ψ

†
Rv̂†(t)ψL, (4)

v̂(t) = v(t)σ̂ze
iφσ̂z/2 . (5)

Notice that by a standard choice of the gauge, we have included
the superconducting phase difference into the hopping term v̂.

We focus our study on the electromechanical (EM) prop-
erties of the junction. We assume that one of the leads is
vibrating at a radial frequency ω0, thus modulating the hopping
term between the left and the right leads. In the limit where
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the amplitude of the oscillations is small, the time-dependent
hopping will be linearly modulated as

v(t) = v{1 + α cos(ω0t)} , (6)

where α ≡ a(1/v)dv/dx � 1, with x the displacement of the
oscillating lead and a the amplitude of oscillation. We will
give estimations for α in Sec. IV.

For large amplitude oscillation a detailed microscopic
model of electron transport is needed. The standard tunneling
picture gives a simple exponential dependence of the hopping
on the displacement v(x) = v(x0)e−(x−x0)/λ, where λ is the
tunneling length. But this picture would be different for
the suspended nanotube, where a linear dependence on
the displacement is supposed to hold for large oscillation
amplitudes. For this reason in this paper we concentrate on
the linear displacement model, which demands only a single
parameter α to describe the EM coupling.

In the present model, the vibrational state of the junction
is considered as an external time-dependent perturbation,
without its own dynamics.30 Before proceeding to determine
the current from the microscopic Hamiltonian [Eq. (2)],
we start the next section by deriving an expression for
the Josephson current within the framework of an effective
two-level Hamiltonian. We will see that in a certain range of
parameters, such a model provides an accurate description of
the electronic dynamics of the contact.

III. DC JOSEPHSON CURRENT

A. Andreev Two-Level Model

In a single-channel superconducting junction, as the one
described by Eq. (2), the equilibrium spectral density is
characterized by the two ABSs |+〉 and |−〉 with energies given
in Eq. (1). In terms of the hopping [Eq. (5)], the transmission
factor τ of the junction is defined as

τ = 4β

(1 + β)2
, (7)

where β = (v/v0)2 is the ratio between the tunnel hopping
amplitude and the electrode bandwidth v0. In the equilibrium
case, the dc current is carried exclusively by the ABSs and can
be written as the sum of two opposite contributions21

I
(0)
DC = I−n− + I+n+ , (8)

I− = −I+ = −2
∂

∂φ
ωA = �2τ sin(φ)

2ωA

, (9)

where n± is the occupation of the |±〉 ABSs which is given
by the Fermi distribution function f (±ωA). Thus, in the
finite temperature T case, one finally obtains the well known
expression for the Josephson current (see Appendix)

I
(0)
DC(φ) = �2τ sin(φ)

2ωA

tanh

(
ωA

2T

)
. (10)

In the limit of zero temperature, only the negative ABS (|−〉) is
populated, and contributes positively to the current in Eq. (10).
At finite temperature T , the positive ABS (|+〉) gets populated
due to the thermal smearing of the Fermi distribution and,
according to Eq. (8), contributes negatively to the Josephson
current.

Now let us consider the perturbation originated by the
mechanical oscillations. If the frequency and amplitude of
the perturbation are sufficiently small, one can still describe
the current as the contribution of the two ABSs. In this
case it is convenient to work with an effective two-level
model Hamiltonian similar to the one derived in Refs. 22
and 31 from the microscopic Hamiltonian Eq. (2). The main
difference between the problem at hand and that considered in
Refs. 22 and 31 is that the time-dependent parameter is not the
superconducting phase, but the transparency of the junction.
Adapting the method to our problem, it gives the following
effective time-dependent Hamiltonian for dτ/dt � �/h̄:

ĥ(t) = � cos
φ

2
σ̂z + �

√
1 − τ (t) sin

φ

2
σ̂y . (11)

This Hamiltonian is written in the ballistic basis of right and
left moving electrons that is the eigenbasis in the perfectly
transmitting case (τ = 1). However, it is more convenient to
write the two-level Hamiltonian in the instantaneous Andreev
basis.25 For that sake, one performs a time-dependent uni-
tary transformation Ĥ = Û †ĥÛ − iÛ †dÛ/dt , where Û (t) =
e−iσ̂z

π
4 e−iθ(t)σ̂y and θ (t) = (1/2) arctan[

√
1 − τ (t) tan φ/2].

The two-level Hamiltonian in the instantaneous Andreev basis
is then given by

ĤA = ωAσ̂z + 1

8

dτ

dt

1√
1 − τ (t)

sin φ

1 − τ (t) sin2(φ/2)
σ̂y . (12)

The off-diagonal terms describe the coupling between the
Andreev levels due to the EM oscillations. The current operator
written in the same basis reads

ÎA = 2
∂ωA

∂φ
σ̂z + �2√1 − τ (t)

ωA

σ̂x . (13)

We consider here the time-dependent transmission determined
by expressions Eqs. (6) and (7) which in a linear approximation
with respect to the amplitude α is

τ (t) ≈ τ + 2τ
√

1 − τα cos(ω0t) . (14)

In order to avoid unphysical values of τ larger than one, one
has to impose α <

√
1 − τ/2τ . Moreover in the particularly

interesting case of very transparent channel, the linear term
of Eq. (14) vanishes, and it would be necessary to consider
the quadratic one. Thus, for (τ → 1) comparison between
the linear and quadratic term imposes the condition α �
2
√

1 − τ .
We can now apply the method developed in Ref. 25 to

obtain time-averaged quantities like the current and the level
population close to the first resonance, i.e., ω0 ≈ 2ωA. Within
the rotating-wave approximation and for one-phonon assisted
processes, we obtain for the dc current

IDC ≈ I
(0)
DC

[
1 − �2

R

(2ωA − ω0)2 + �2
R

]
, (15)

where the Rabi frequency

�R = ατ sin(φ)ω0�
2/(2ωA)2 (16)

is proportional to the coupling strength α. Notice that at the
resonance, the dc current vanishes. This is due to the fact that
when ω0 = 2ωA, resonant transitions between the Andreev
levels take place and both levels will be on average equally
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populated. According to Eq. (8), this leads to a decrease of
the dc current, which vanishes exactly at the resonance. The
width of the resonance as given by Eq. (16) is proportional
to the amplitude α of the oscillation. Thus, in principle by
measuring the CPR one could determine both the amplitude
and frequency of the contact oscillation as given by Eqs. (15)
and (16). Finally, the time averaged population of the upper
and lower Andreev states are given by

n− = 1 − 1

2

�2
R

(2ωA − ω0)2 + �2
R

, (17)

n+ = 1

2

�2
R

(2ωA − ω0)2 + �2
R

. (18)

These results are particularly simple and transparent, but
they rely on different approximations. In the following section
we will thus perform a fully microscopic calculation in order
to check their validity. The method used does not need a
hypothesis on the slowness of the mechanical frequency nor
on the amplitude of the oscillations (α) and keeps the full
description of the electronic system. The approach allows us
to take into account the effect of the continuum spectrum and
in particular will remove the limitation on α � √

1 − τ . We
will see that the largest deviations are exactly where higher
orders of α become important (α >

√
1 − τ ) and when the

resonant φ is close to π .

B. Nambu-Keldysh Green function method

In the preceding section we have determined the dc
Josephson current from an effective two-level model. In this
section we introduce a numerical method that allows us to
compute exactly the dc Josephson current in the presence
of EM coupling from the microscopic model introduced in
Sec. II. From our results, we will able to verify the range of
validity of Eqs. (15) and (16), and to obtain the current out
of that range. The method is based on the computation of
the Nambu-Keldysh Green functions (GFs) for the fermionic
fields of the Hamiltonian [Eq. (2)]. These are defined as

Ĝ
αβ

XX′ (t,t ′) = −i〈TcψX(t)ψ†
X′(t ′)〉 , (19)

where Tc means time ordering along the Keldysh contour,
α,β = ± denote the Keldysh branches, and X,X′ = L,R stand
for electrode indexes. From charge conservation at the L-R
interface, one obtains the expression of the mean current
crossing the junction at time t in terms of the GFs

I (t) = Tr{σ̂z[v̂(t)Ĝ+−
RL (t,t) − v̂†(t)Ĝ+−

LR (t,t)]} . (20)

It is convenient to rewrite the Hamiltonian [Eq. (2)] as the sum
of an unperturbed part plus the time-dependent perturbation

Ĥ = Ĥ0 + V̂ (t) , (21)

where

Ĥ0 =
∑

X=L,R

ĤX + vŴT , (22)

V̂ (t) = αv cos(ω0t)ŴT , (23)

and

ŴT = ψ
†
Lσ̂ze

iφσ̂z/2ψR + ψ
†
Rσ̂ze

−iφσ̂z/2ψL . (24)

FIG. 2. Schematic representation of the Dyson equation [Eq.
(29)] for the Green function in the Electrode-Nambu-Keldysh-Floquet
space. The thick (thin) lines represent the Green functions in the
vibrating (nonvibrating) cases, while the wavy line represents the
external time-dependent perturbation.

The corresponding Dyson equation is shown diagrammatically
in Fig. 2. The thin lines represent the unperturbed Green’s
functions, i.e., those associated to Ĥ0, while the thick lines
are the exact GFs which take into account the external time-
dependent perturbation represented by a wavy line.

Due to the time periodicity of the Hamiltonian, one can
write the GFs in Floquet representation and the corresponding
current operator as a Fourier series:

Ĝ
αβ

XX′ (t,t ′) =
∑

n

e−inω0t
′
∫

dω

2π
e−iω(t−t ′)Ĝ

αβ

XX′;n(ω) ,

(25)

I (t) =
∑

n

e−inω0t In . (26)

We are interested in the dc component (n = 0) of the mean
current given by

IDC(φ) =
∑
m

∫
dω

2π
Tr{σ̂z[v̂m0Ĝ

+−
RL;0m(ω) − v̂

†
m0Ĝ

+−
LR;0m(ω)]} ,

(27)

where the hopping matrix v̂ in the Floquet space is defined as

v̂m0 = v̂

{
δm,0 + α

2
δm,∓1

}
. (28)

The Dyson equation in the frequency representation is then
given by (cf. Fig. 2)

Ĝ
αβ

XX′;n(ω)= ĝ
αβ

XX′ (ω)δn,0

+
∑

X1,α1,m

[
ĝ

αα1
XX1

(ω)V̂ α1

X1X1;m
Ĝ

α1β

X1X′;n−m
(ω − mω0)

]
.

(29)

Here the self-energy term is given by

V̂
α1

X1X1;m
= α1

(
α

2

)
v̂X1X1

δm;±1 , (30)

and the expressions for the free propagators ĝ
αβ

XX′(ω) in the
absence of vibrations (α = 0) are given in the Appendix.

In the case α �= 0, however, the GFs Ĝ
αβ

XX′;n(ω) can only
be found numerically by solving the Dyson equation (29).
The latter constitutes a linear system in the Electrode-Nambu-
Keldysh-Floquet space of dimension 2 × 2 × 2 × (2Nph + 1)
and is solved by exact numerical inversion. The maximum
number of vibrational quanta in the system Nph is increased
until convergence of the solution is found.32
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IV. DISCUSSION OF THE RESULTS

Following the procedure described in the previous section,
we present in Fig. 3 the numerical results obtained for the
dc Josephson current in the presence of the EM interaction
for a highly transmitting junction (τ = 0.98). The dark dotted
line represents the dc current I

(0)
DC(φ) obtained in absence of

vibrations (α = 0) as it is given by Eq. (10). For ω0 = 0.4�

and α = 0.04, the dashed and solid lines show the results
of the two-level model [Eq. (15)] and the full numerical
solution, respectively. As anticipated before, the EM coupling
induces an antiresonance on the dc Josephson current when
the condition ω0 = 2ωA is fulfilled, namely, when the phase
difference between L and R superconductors reaches the
critical value

φres = 2 arcsin

√
1

τ

[
1 −

(
ω0

2�

)2]
. (31)

The signature of such a modulation is the presence of dips
in the current-phase relation, the position of which provides a
measure of the vibrational frequency ω0 through the resonance
condition Eq. (31). The width of the dip is proportional to
the coupling α between the nanoresonator and the vibrational
mode of the junction being excited. It is well approximated by
the expression (16). The numerics show some additional dips
in the CPR that are associated with higher-order transitions.
Such processes which are obviously absent from Eq. (15) could
be incorporated by extending the analytical calculation to the
next leading orders in powers of α (see Refs. 24 and 25).
According to the upper panel of Fig. 4, the resonance dip is
accurately approximated both in position and width by the
Eq. (15). The discrepancy between the simplified two-level
model and the full numerical calculation becomes visible
when increasing the value of α. This deviation is due to
the fact that for large enough values of α the condition
α <

√
1 − τ is not satisfied. In the particular case of the upper

FIG. 3. (Color online) Josephson current for ω0 = 0.4�, τ =
0.98, α = 0.04, T = 0 K, and η = 0.001� (η is the inverse of the
relaxation time of the superconductor as defined in the Appendix).
Plain (dashed) curves correspond to the full numerical (analytical)
calculations. Dotted curve: current in the case of vanishing α. Inset:
Same plot on a larger scale.

FIG. 4. (Color online) Upper panel: Josephson current for the
cases of EM coupling α = 0.01, 0.0175, 0.025 (within the range of
validity of the analytic model). Plain (dashed) curves correspond to
the full numerical (analytical) calculations. The arrow is denoting the
direction of increasing values of α. Lower panel: Josephson current
for the cases of larger EM coupling α = 0.04, 0.06, 0.08,0.1, as
obtained from the full numerical calculation. Common to all curves:
τ = 0.999, ω0 = 0.1�, η = 0.001�, and T = 0 K. Topmost curve:
current in the case α = 0.

panel of Fig. 4, α = 0.01 to 0.025, τ = 0.999, and ω0 = 0.1�.
Therefore the analytical result is valid as far as α < 0.03. For
larger values of α, Eq. (15) is no longer valid and one has
to resort to numerical results. These are shown in the lower
panel of Fig. 4, where α = 0.04 to 0.1. The parameters used
in Fig. 4 correspond to a high-frequency oscillator ω0/2π =
1 GHz and a superconductor with a small superconducting
gap � ≈ 0.04 meV. Suspended carbon nanotubes between
two superconductors seem to be good candidates to reach
this regime. For instance, the resonant frequency for the
fundamental mode of such a vibrating nanotube was reported
in Ref. 33 to be in the range of 500 MHz. In Ref. 34 a carbon
nanotube was connected to a superconducting Al/Pd bilayer
electrode with a BCS gap of 0.08 meV which is in the range
of our estimation.

As mentioned above some differences between the numer-
ical results and the analytical one emerge for φ close to π that
become more pronounced when increasing the value of the
coupling strength α, as shown in the lower panel of Fig. 4,
for which α = 0.04 to 0.1. Notice that in this regime the exact
numerical calculation predicts a change of the current sign
close to φ = π due to higher order processes.

The results presented show that measuring the current phase
relation in a Josephson junction coupled to a mechanical
oscillator can allow the detection of its periodic oscillation
(for example when the oscillator is driven by an external
force). We found that the CPR displays sharp dips when
the resonance condition ω0 = 2ωA is met. According to
Eq. (1) for τ → 1 and ωA(φ = π ) → 0, one can in principle
always satisfy the resonant condition. In reality this can be
difficult, since it requires τ being very near to one, and �

for standard superconductors is much larger than the typical
mechanical frequency. This problem can be solved by using
superconducting alloys with smaller gap, or by introducing a
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magnetic field in order to reduce � to a value which is slightly
larger than the mechanical resonance. Then the fine tuning of
the resonance with the phase bias can be possible.

The second crucial parameter in order to observe this effect
is the coupling constant α. A reasonable estimate of the order of
magnitude of α can be obtained by considering the experiment
of Ref. 10, which was performed on a driven nanomechanical
oscillator in its normal metallic state. The authors of Ref. 10
estimate the resistance dependence on the displacement to
be (1/R)dR/dx ∼ 0.1 nm−1, with a typical displacement in
the driven case of the order of a nm. Thus a very crude
estimate of the order of magnitude of α is 0.1, that is a
quite strong coupling. Remarkably, for a suspended carbon
nanotube in the Fabry-Perot regime, we find a similar order of
magnitude. This can be estimated by using the responsivity
of the transparency to an external change of gate voltage
from Ref. 26 and (1/Cg)dCg/dx ≈ 1/d, where Cg is the gate
capacitance, and d is the distance of the nanotube from the
gate. It is clear that at this level these are only crude estimates
of the order of magnitude of α, but the result is encouraging.

In principle one could also detect thermal motion of the
mechanical oscillator with this method if the quality factor Q

of the mechanical oscillator is sufficiently large As a matter of
fact, the thermal motion can be seen as a sequence of periodic
oscillations with a coherence time given by Q/ω0. Averaging
the current over a time much longer than this time corresponds
to averaging the current obtained above over different values of
the amplitudes of oscillation (and thus of α). One thus expects
also in this case a dip in the CPR, but with a width that is
controlled by the average of α. In the case of Ref. 10 this
motion is tiny and gives that on average α ≈ 10−4. This gives
an extremely sharp dip, and thus its observation is subject to a
very accurate detection of the CPR.

All the results presented so far are for the zero temperature
limit. In the case of finite temperature, the coupling of
the quantum point contact to the mechanical oscillator may
lead to enhancement of the supercurrent as was discussed
in the context of a microwave field.24,25 The enhancement
of the current is due to inelastic processes which promote
particles from the continuum spectrum (ω < −�) to the lower
ABS. This phenomenon (not shown here) is an analog to
the superconducting stimulation by acoustic waves in bulk
materials discussed by Eliashberg and Ivlev in 1986.35

But more important to the efficiency of this device as a
detector is the fact that thermal fluctuations can prevent the
observation of the mechanical oscillations. For temperatures
of the order of and larger than ω0 = 2ωA, the thermal
occupation of the two-level system tends to the value 1/2:
n± = f (±ω0/2) ≈ 1/2 ∓ ω0/(8T ) + o(ω3

0). This effect will
reduce the overall value of the Josephson current; nevertheless
by the exact numerical solution, we find that a signal is still
visible till moderately high temperatures. As it is shown in
Fig. 5, for T = 0.5 − 2ω0 the CPRs maintain a local minimum
at the resonance. The position of the dip is independent of
the temperature [cf. Eq. (31)] while it widens for higher
temperatures.

One should emphasize that the back action of the Josephson
junction on the mechanical oscillator is neglected in the present
work. The establishment of an effective two-level model for the
Josephson junction description opens the way to considering

FIG. 5. (Color online) Josephson current in the finite temperature
case T = 0.0, 0.5, 1.0, 2.0ω0, as obtained from the full numerical
calculation. Parameters of the plot: τ = 0.999, ω0 = 0.1�, α = 0.01,
and η = 0.001�. Topmost curve: current in the case α = 0.

the full dynamics of the two systems coupled. At this stage, we
can evaluate the ratio of the average of the back-action force
〈F̂ba(t)〉 = −〈∂ĥ(t)/∂x〉 to the elastic force Fel = −mω2

0x. We
find that 〈F̂ba(t)〉/Fel ≈ 3�/4mω2

0λ
2, where we introduced

the characteristic length λ = v/(dv/dx). Interestingly, this
ratio is independent of the amplitude of the oscillations. For a
single wall carbon nanotube of mass m ≈ 10−21 kg that oscil-
lates at the frequency ω0/2π = 1 GHz, we roughly estimate
this ratio to be in the range 10−4–10−6 (Ref. 36). Although
very small, this back action may lead to interesting effects as
the cooling effect of the mechanical degree of freedom in the
presence of an external magnetic field.28 Note also that we
have safely neglected the effects of Coulomb blockade on the
mechanical oscillation37,38 since the interesting region for this
device is the very transparent case.

V. CONCLUSIONS

In conclusion we have shown the possibility of detecting
ultrafast oscillations of a nanoscale Josephson junction by ana-
lyzing its dc current-phase characteristics. In the high transmis-
sion regime τ ≈ 1, the onset of electromechanical coupling re-
sults in the appearance of dips in the IDC(φ) characteristics for
precise values of the phase difference φ. The location of those
dips provides a new way to measure the vibrational frequency
ω0 of the oscillator, and their width is directly proportional to
the EM coupling strength α. If the latter is sufficiently small,
we have derived an effective two-level Hamiltonian [Eq. (12)]
which describes quite accurately the dynamics of the contact
in the presence of an EM perturbation. Our results provide a
new way of characterizing the motion at the nanoscale.
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APPENDIX: FREE GREEN FUNCTIONS

Here we determine the GFs of the nonvibrating Josephson
junction (α = 0). We first consider the isolated Right electrode
described by the time-independent Hamiltonian [Eq. (3)]. The
retarded (R) and advanced (A) surface Green functions of
such a system can be found analytically by making use of
the periodicity of the Hamiltonian when writing its Dyson
equation

ĝ
η=R(A)
R (ω) = {

ωη − �σ̂x − v̂0ĝ
η=R(A)
R (ω)v̂†

0

}−1
, (A1)

where ωη = ω + iη. The small imaginary part describes
inelastic scattering in the leads within the relaxation time
approximation and is the smallest energy scale of the problem.
In the small gap limit (�,ω � 2|v0|, v0 is the electrode
bandwidth), one finds for the solution of Eq. (A1):

ĝ
η=R(A)
S (ω) = Nη(ω){ωη + �σ̂x} , (A2)

where

Nη(ω) = − 1

v0

{
θ (|�| − |ω|)√

|�|2 − ω2
η

+ iηsign(ω)
θ (|ω| − |�|)√

ω2
η − |�|2

}
.

We connect now the R lead to the L lead through the time-
independent part of the tunnel Hamiltonian [Eq. (4)]. The
Dyson equations for the retarded (advanced) GFs of the entire
nanojunction read

Ĝ
η=R(A)
R (ω) = 1(

ĝ
η=R(A)
R

)−1
(ω) − v̂†ĝη=R(A)

L (ω)v̂
, (A3)

Ĝ
η=R(A)
LR (ω) = ĝ

η=R(A)
L (ω)v̂Ĝ

η=R(A)
R (ω) . (A4)

Equations (A3) and (A4) can be solved analytically and
provide the expressions for the unperturbed GFs used in
Eq. (29):

Ĝ
η=R,A

R (ω) = gη(ω)

|v0|(1 + β)
(
ω2

η − ω2
A

) [
ωη ω∗

A

ωA ωη

]
, (A5)

Ĝ
η=R,A

LR (ω) = β

|v|(1 + β)
(
ω2

η − ω2
A

)
[

a(φ) −b(−φ)

b(φ) −a(−φ)

]
,

(A6)

a(φ) = eiφ/2ω2
η − e−iφ/2ωA� , (A7)

b(φ) = ωη(eiφ/2� − e−φ/2ωA) , (A8)

where we introduced the intermediate function

gη(ω) = θ (|�| − |ω|)
√

|�|2 − ω2
η − iηsign(ω)θ (|ω| − |�|)√

ω2
η − |�|2 and the complex number ωA = �

1+βeiφ

1+β
,

the module of which is the Andreev bound state energy
ωA = �

√
1 − τ sin2(φ/2). The remaining components of the

GFs are obtained by changing simultaneously left and right
electrode indexes and the sign of the superconducting phase
difference, i.e., (L,φ) → (R, − φ).

Finally, the nondiagonal component of the Keldysh GFs
can be found using the relation (valid at equilibrium
only)

Ĝ+−
XX′ (ω) = f (ω)

{
ĜA

XX′(ω) − ĜR
XX′ (ω)

}
, (A9)

where f is the Fermi distribution function. From this equation

one can compute the equilibrium Josephson current [Eq. (10)]
by integrating the following expression:

I
(0)
DC(φ) =

∫
dω

2π
Tr{σ̂z[v̂Ĝ+−

RL (ω) − v̂†Ĝ+−
LR (ω)]} . (A10)
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