18 research outputs found

    Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model

    Get PDF
    Background: Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed. Methods: Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11). Results: Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy’s ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose. Discussion: Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Epidemiological burden of postmenopausal osteoporosis in Italy from 2010 to 2020: estimations from a disease model

    No full text
    The article describes the adaptation of a model to estimate the burden of postmenopausal osteoporosis in women aged 50 years and over in Italy between 2010 and 2020. For this purpose, a validated postmenopausal osteoporosis disease model developed for Sweden was adapted to Italy. For each year of the study, the ‘incident cohort’ (women experiencing a first osteoporotic fracture) was identified and run through a Markov model using 1-year cycles until 2020. Health states were based on the number of fractures and deaths. Fracture by site (hip, clinical vertebral, non-hip non-vertebral) was tracked for each health state. Transition probabilities reflected fracture site-specific risk of death and subsequent fractures. Model inputs specific to Italy included population size and life tables from 1970 to 2020, incidence of hip fracture and BMD by age in the general population (mean and standard deviation). The model estimated that the number of postmenopausal osteoporotic women would increase from 3.3 million to 3.7 million between 2010 and 2020 (+14.3 %). Assuming unchanged incidence rates by age group over time, the model predicted the overall number of osteoporotic fractures to increase from 285.0 to 335.8 thousand fractures between 2010 and 2020 (+17.8 %). The estimated expected increases in hip, vertebral and non-hip non-vertebral fractures were 22.3, 17.2 and 16.3 %, respectively. Due to demographic changes, the burden of fractures is expected to increase markedly by 2020<br/

    New nitrogen containing substituents at the indole-2-carboxamide yield high potent and broad spectrum indolylarylsulfone HIV-1 non-nucleoside reverse transcriptase inhibitors

    No full text
    New indolylarylsulfone (IAS) derivatives bearing nitrogen containing substituents at the indole-2-carboxamide inhibited the HIV-1 WT in MT-4 cells at low nanomolar concentrations. In particular, compound 9 was uniformly effective against the mutant Y181C, Y188L, and K103N HIV-1 strains; it was highly active against the multidrug resistant mutant IRLL98 HIV-1 strain bearing the K101Q, Y181C, and G190A mutations conferring resistance to NVP, DLV, and EFV and several HIV-1 clades A in PBMC. © 2012 American Chemical Society

    Effects of repeated long-term psychosocial stress and acute cannabinoid exposure on mouse corticostriatal circuitries: implications for neuropsychiatric disorders

    No full text
    Vulnerability to psychiatric manifestations is achieved by the influence of genetic and environment including stress and cannabis consumption. Here, we used a psychosocial stress model based on resident-intruder confrontations to study the brain corticostriatal-function, since deregulation of corticostriatal circuitries has been reported in many psychiatric disorders. CB1 receptors are widely expressed in the central nervous system and particularly, in both cortex and striatum brain structures. AIMS AND METHODS: The investigation presented here is addressed to assess the impact of repeated stress following acute cannabinoid exposure on behavior and corticostriatal brain physiology by assessing mice behavior, the concentration of endocannabinoid and endocannabinoid-like molecules and changes in the transcriptome. RESULTS: Stressed animals urinated frequently; showed exacerbated scratching activity, lower striatal N-arachidonylethanolamine (AEA) levels and higher cortical expression of cholinergic receptor nicotinic alpha 6. The cannabinoid agonist WIN55212.2 diminished locomotor activity while the inverse agonist increased the distance travelled in the center of the open field. Upon CB1 activation, N-oleoylethanolamide and N-palmitoylethanolamide, two AEA congeners that do not interact directly with cannabinoid receptors, were enhanced in the striatum. The co-administration with both cannabinoids induced an up-regulation of striatal FK506 binding protein 5. The inverse agonist in controls reversed the effects of WIN55212.2 on motor activity. When Rimonabant was injected under stress, the cortical levels of 2-arachidonoylglycerol were maximum. The agonist and the antagonist influenced the cortical expression of cholinergic receptor nicotinic alpha 6 and serotonin transporter neurotransmitter type 4 in opposite directions, while their co-administration tended to produce a null effect under stress. CONCLUSIONS: The endocannabinoid system had a direct effect on serotoninergic neurotransmission and glucocorticoid signaling. Cholinergic receptor nicotinic alpha-6 was shown to be deregulated in response to stress and following synthetic cannabinoid drugs thus could confer vulnerability to cannabis addiction and psychosis. Targeting the receptors of endocannabinoids and endocannabinoid-like mediators might be a valuable option for treating stress-related neuropsychiatric symptom
    corecore