413 research outputs found

    Neutrinos and Cosmology: an update

    Get PDF
    We review the current cosmological status of neutrinos, with particular emphasis on their effects on Big Bang Nucleosynthesis, Large Scale Structure of the universe and Cosmic Microwave Background Radiation measurements.Comment: 4 pages, 1 figure, to appear in the proceedings of IFAE, Catania 200

    A Positive Test for Fermi-Dirac Distributions of Quark-Partons

    Get PDF
    By describing a large class of deep inelastic processes with standard parameterization for the different parton species, we check the characteristic relationship dictated by Pauli principle: broader shapes for higher first moments. Indeed, the ratios between the second and the first moment and the one between the third and the second moment for the valence partons is an increasing function of the first moment and agrees quantitatively with the values found with Fermi-Dirac distributions.Comment: 15 pages LaTeX, 2 eps figures. Final version, to appear in Mod. Phys. Lett.

    Primordial Nucleosynthesis: from precision cosmology to fundamental physics

    Get PDF
    We present an up-to-date review of Big Bang Nucleosynthesis (BBN). We discuss the main improvements which have been achieved in the past two decades on the overall theoretical framework, summarize the impact of new experimental results on nuclear reaction rates, and critically re-examine the astrophysical determinations of light nuclei abundances. We report then on how BBN can be used as a powerful test of new physics, constraining a wide range of ideas and theoretical models of fundamental interactions beyond the standard model of strong and electroweak forces and Einstein's general relativity.Comment: 148 pages, 66 figures, revised version accepted by Physics Report

    Polarized Quarks, Gluons and Sea in Nucleon Structure Functions

    Get PDF
    We perform a NLO analysis of polarized deep inelastic scattering data to test two different solutions to the so called spin crisis: one of them based on the axial gluon anomaly and consistent with the Bjorken sum rule and another one, where the defects in the spin sum rules and in the Gottfried sum rule are related. In this case a defect is also expected for the Bjorken sum rule. The first solution is slightly favoured by the SLAC E154 results, but both options seem to be consistent with the CERN SMC data.Comment: 19 pages, LateX, 6 figures. Figures included in the tex

    Statistical Inspired Parton Distributions and the Violation of QPM Sum Rules

    Get PDF
    A quantum statistical parametrization of parton distributions has been considered. In this framework, the exclusion Pauli principle connects the violation of the Gottfried sum rule with the Ellis and Jaffe one, and implies a defect in the Bjorken sum rule. However, in terms of standard parametrizations of the polarized distributions a good description of the data is obtained once a large gluon polarization is provided. Interestingly, in this description there is no violation of the Bjorken sum rule.Comment: 10 pages, LateX + 15 figures, Talk given at ``Hadrons 96'' Workshop, Novy Svet (CRIMEA), June 9-1

    Low x Behaviour of the Isovector Nucleon Polarized Structure Function and the Bjorken Sum Rule

    Get PDF
    The combination g_1^p(x) - g_1^n(x) is derived from SLAC data on polarized proton and deuteron targets, evaluated at Q^2 = 10 GeV^2, and compared with the results of SMC experiment. The agreement is satisfactory except for the points at the three lowest x, which have an important role in the SMC evaluation of the l.h.s. of the Bjorken sum rule.Comment: 9 pages LaTeX + 4 eps figures, to appear in Modern Physics Letters

    Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km^3 neutrino telescope

    Get PDF
    The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple parametrization for fluxes and cross sections, we present a sensitivity analysis for the case of a km^3 neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.Comment: 10 pages, 28 figure

    High Energy Neutrinos with a Mediterranean Neutrino Telescope

    Get PDF
    The high energy neutrino detection by a km^3 Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino-nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.Comment: 4 pages, 3 figures, Proceedings of the 30th ICRC 200

    RIME: Repeat Identification

    Get PDF
    We present an algorithm for detecting long similar fragments occurring at least twice in a set of biological sequences. The problem becomes computationally challenging when the frequency of a repeat is allowed to increase and when a non-negligible number of insertions, deletions and substitutions are allowed. We introduce in this paper an algorithm, Rime1 1 Rime is also a reference to Coleridge's poem "The Rime of an Ancient Mariner" which contains many repetitions as a poetic device. (for Repeat Identification: long, Multiple, and with Edits) that performs this task, and manages instances whose size and combination of parameters cannot be handled by other currently existing methods. This is achieved by using a filter as a preprocessing step, and by then exploiting the information gathered by the filter in the following actual repeat inference step. To the best of our knowledge, Rime is the first algorithm that can accurately deal with very long repeats (up to a few thousands), occurring possibly several times, and with a rate of differences (substitutions and indels) allowed among copies of a same repeat of 10-15% or even more
    • …
    corecore