1,680 research outputs found

    Hybrid Passive Control Strategies for Reducing the Displacements at the Base of Seismic Isolated Structures

    Get PDF
    In this paper, the use of hybrid passive control strategies to mitigate the seismic response of a base-isolated structure is examined. The control performance of three different types of devices used for reducing base displacements of isolated buildings is investigated. Specifically, the Tuned Mass Damper (TMD), the New Tuned Mass Damper (New TMD) and the Tuned Liquid Column Damper (TLCD), each one associated to a Base Isolated structure (BI), have been considered. The seismic induced vibration control of base-isolated structures equipped with the TMD, New TMD or the TLCD is examined and compared with that of the base-isolated system without devices, using real recorded seismic signals as external input. Data show that the New TMD is the most effective in controlling the response of base-isolated structures so that it can be considered as a practical and appealing means to mitigate the dynamic response of base-isolated structures

    Daniela Rigato, Gli dei che guariscono

    Get PDF

    Multiplicative cases from additive cases: Extension of Kolmogorov-Feller equation to parametric Poisson white noise processes

    Get PDF
    In this paper the response of nonlinear systems driven by parametric Poissonian white noise is examined. As is well known, the response sample function or the response statistics of a system driven by external white noise processes is completely defined. Starting from the system driven by external white noise processes, when an invertible nonlinear transformation is applied, the transformed system in the new state variable is driven by a parametric type excitation. So this latter artificial system may be used as a tool to find out the proper solution to solve systems driven by parametric white noises. In fact, solving this new system, being the nonlinear transformation invertible, we must pass from the solution of the artificial system (driven by parametric noise) to that of the original one (driven by external noise, that is known). Moreover, introducing this invertible nonlinear transformation into the Itˆo’s rule for the original system driven by external input, one can derive the Itˆo’s rule for systems driven by a parametric type excitation, directly. In this latter case one can see how natural is the presence of the Wong–Zakai correction term or the presence of the hierarchy of correction terms in the case of normal and Poissonian white noise, respectively. Direct transformation on the Fokker–Planck and on the Kolmogorov–Feller equation for the case of parametric input are found

    Colored Speech: Cross Burnings, Epistemics, and the Triumph of the Crits?

    Get PDF
    This Essay examines the Court\u27s recent decision in Virginia v. Black. It argues that Black signifies a different approach to the constitutionality of statutes regulating cross burnings. It shows how the Court\u27s conservatives have essentially accepted the intellectual framework and the mode of analysis suggested previously by the critical race theorists. In particular, this Essay explores the role that Justice Thomas plays in the case. The Essay explains Justice Thomas\u27s active participation as a matter of epistemic authority and epistemic deference

    Testing chromatic adaption models using object colors

    Get PDF
    The objective of this research was to determine which published chromatic adaptation model performed best under a single set of conditions. Previous research has been conducted to study chromatic adaptation, develop models and to indirectly test those models. This research directly tested the performance of these models using printed, simple-field, object colors through a successive-ganzfe/cf haploscopic, paired comparison, matching experiment. The chromatic adaptation models tested were CIELAB, CIELUV, Fairchild \u2791, Hunt \u2791, LABHNU2, Nayatani et al. \u2790 and von Kries. The test illuminant was incandescent at 231 lux. Model predictions were calculated for the reference simulated daylight at 2,396 lux. The Hunt model was found to predict the best matches for each color sample, and across all ten color centers. The other models\u27 performances were significantly different, but not nearly as good. However, two versions of the Hunt model were tested, and neither performed consistently, although they both performed better than the other models. For a wide chromatic range of object colors, an alternative form of the Hunt model is suggested for implementing the prediction of corresponding colors

    A new OMA method to perform structural dynamic identification: numerical and experimental investigation

    Get PDF
    Operational modal analysis (OMA) methods are nowadays common in civil, mechanical and aerospace engineering to identify and monitor structural systems without any knowledge on the structural excitation provided that the latter is due to ambient vibrations. For this reason, OMA methods are embedded with stochastic concepts and then it is difficult for users that have no-knowledge in signal analysis and stochastic dynamics. In this paper an innovative method useful for structural health monitoring (SHM) is proposed. It is based on the signal filtering and on the Hilbert transform of the correlation function matrix. Specifically, the modal shapes are estimated from the correlation functions matrix of the filtered output process and then the frequencies and the damping ratios are estimated from the analytical signals of the mono-component correlation functions: a complex signals in which the real part represents the correlation function and the imaginary part is its Hilbert transform. This method is very simple to use since requires only few interactions with the users and thus it can be used also from users that are not experts in the aforementioned areas. In order to prove the reliability of the proposed method, numerical simulations and experimental tests are reported also considering comparisons with the most popular OMA methods

    On the Stochastic Response of a Fractionally-damped Duffing Oscillator

    Get PDF
    A numerical method is presented to compute the response of a viscoelastic Duffing oscillator with fractional derivative damping, subjected to a stochastic input. The key idea involves an appropriate discretization of the fractional derivative, based on a preliminary change of variable, that allows to approximate the original system by an equivalent system with additional degrees of freedom, the number of which depends on the discretization of the fractional derivative. Unlike the original system that, due to the presence of the fractional derivative, is governed by non-ordinary differential equations, the equivalent system is governed by ordinary differential equations that can be readily handled by standard integration methods such as the Runge–Kutta method. In this manner, a significant reduction of computational effort is achieved with respect to the classical solution methods, where the fractional derivative is reverted to a Grunwald–Letnikov series expansion and numerical integration methods are applied in incremental form. The method applies for fractional damping of arbitrary order a (0 < a < 1) and yields very satisfactory results. With respect to its applications, it is worth remarking that the method may be considered for evaluating the dynamic response of a structural system under stochastic excitations such as earthquake and wind, or of a motorcycle equipped with viscoelastic devices on a stochastic road ground profile

    Fluid-structure interaction and flow redistribution in membrane-bounded channels

    Get PDF
    The hydrodynamics of electrodialysis and reverse electrodialysis is commonly studied by neglecting membrane deformation caused by transmembrane pressure (TMP). However, large frictional pressure drops and differences in fluid velocity or physical properties in adjacent channels may lead to significant TMP values. In previous works, we conducted one-way coupled structural-CFD simulations at the scale of one periodic unit of a profiled membrane/channel assembly and computed its deformation and frictional characteristics as functions of TMP. In this work, a novel fluid-structure interaction model is presented, which predicts, at the channel pair scale, the changes in flow distribution associated with membrane deformations. The continuity and Darcy equations are solved in two adjacent channels by treating them as porous media and using the previous CFD results to express their hydraulic permeability as a function of the local TMP. Results are presented for square stacks of 0.6-m sides in cross and counter flow at superficial velocities of 1 to 10 cm/s. At low velocities, the corresponding low TMP does not significantly affect the flow distribution. As the velocity increases, the larger membrane deformation causes significant fluid redistribution. In the cross flow, the departure of the local superficial velocity from a mean value of 10 cm/s ranges between -27% and +39%

    Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM

    Get PDF
    This paper provides solutions for De Saint-Venant torsion problem on a beam with arbitrary and uniform cross-section. In particular three methods framed into complex analysis have been considered: Complex Polynomial Method (CPM), Complex Variable Boundary Element Method (CVBEM) and Line Element-less Method (LEM), recently proposed. CPM involves the expansion of a complex potential in Taylor series, computing the unknown coefficients by means of collocation points on the boundary. CVBEM takes advantage of Cauchy’s integral formula that returns the solution of Laplace equation when mixed boundary conditions on both real and imaginary parts of the complex potential are known. LEM introduces the expansion in the double-ended Laurent series involving harmonic polynomials, proposing an element-free weak form procedure, by imposing that the square of the net flux of the shear stress across the border is minimized with respect to the series coefficients. These methods have been compared with respect to numerical efficiency and accuracy. Numerical results have been correlated with analytical and approximate solutions that can be already found in literature
    • …
    corecore