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Abstract

Monte Carlo technique is constituted of three steps. Therefore, improving such technique in practice means, improving the
procedure used in one of the three following steps: (i) sample paths of the stochastic input process, (ii) calculation of the
outputs corresponding to the generated input samples by using methods of classical dynamics and (iii) estimating statistics of
the output process from sample outputs related to the previous step. For linear and non-linear systems driven by parametric
impulsive inputs such as normal or non-normal white noises, a general integration method requires a considerable reduction
of the integration step when the impulse occurs, treating the impulse as a physical one, by means of a window function of
finite duration. This makes Monte Carlo simulation very prohibitive from a computational time point of view. While knowing
the exact jump value of the response at impulse occurring that is expressed by a numerical series, the aforementioned problem
is overcome because there is no need to reduce the integration step saving computational time, reliability being equal as
shown by means of a numerical example.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Random vibration problems correspond to evaluat-
ing the solution of deterministic differential equations
driven by random process inputs and constitute an ex-
tension of classical dynamic problems to the case in
which the randomness of the external or parametric
excitation can be modeled either directly or indirectly
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by Gaussian or non-Gaussian processes. Hereinafter
the case in which the input is a normal or non-normal
white noise process will be investigated.

A current research trend relates to the development
of efficient methods[1–6] that can provide differen-
tial equations governing the evolution of the response
statistics by using the classical Itô differential rule and
its extension for solving systems driven by both exter-
nal [7–11] and parametric[12–19] non-normal white
noise excitations. Accuracy and efficiency aspects of
these alternative methods are confirmed by a compari-
son with Monte Carlo simulation technique, based on
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very effective algorithms for solving wide variety of
problems.

As is well known, the problem with this latter tech-
nique is that is computationally expensive, because it
requires a very high sample size of the process in-
put and consequently a large number of deterministic
analyses. However, the recent advent of high-speed
digital computers has made Monte Carlo (MC) tech-
nique competitive with the aforementioned methods
than ever before[20]; such that in parallel to perform
new techniques, giving directly the output statistics,
an attempt to enhance the efficiency of MC technique
is desirable.

Basically MC technique is constituted of three
steps. Therefore, to improve such technique in prac-
tice means enhancing the procedure used in one of
the three following steps: (i) sample paths of the
stochastic input process, (ii) calculating the outputs
corresponding to the generated input samples by us-
ing methods of classical dynamics and (iii) estimating
statistics of the output process from sample outputs
related to the previous step.

Pertaining the first step, there are several alterna-
tive approaches to the classical one currently under
development, either regarding the random digits[21]
or concerning the importance sampling technique for
Poissonian processes[22,23]. However, very little is
found in improving the second step. Regarding the
third step, MC approach becomes time consuming for
non-linear systems that need higher-order statistics. In
[24] an attempt is made. An alternative approach uses
MC method to calculate the first few moments of the
response process with a small number of input sam-
ples, and then calculating higher-order statistics be-
comes an easy task, because they are solution of lin-
ear differential equations, once the first few response
moments are introduced.

This paper aims at contributing to speed up the cal-
culation involved in the second step, the main issue is
addressed for normal or non-normal parametric white
noise input, since in these circumstances, it may be
considered that the input is impulsive and a correct in-
tegration scheme at each impulse occurrence is needed
for. For linear and non-linear systems driven by para-
metric impulsive inputs such as normal or non-normal
white noises, a general integration method requires a
considerable reduction of the integration step when the
impulse occurs, treating the impulse as a physical one,

by means of a window function of finite duration. This
makes MC simulation very prohibitive from a compu-
tational time point of view. While knowing the exact
jump value of the response at occurring of impulse,
that is expressed by a numerical series[25–27], the
aforementioned problem is overcome because there is
no need to reduce the integration step saving computa-
tional time, reliability being equal as shown by means
of a numerical example.

2. Preliminary concepts

The Poisson white noise process, the generator of all
white noise stochastic processes, here labeledWp(t),
consists of a train of Dirac’s delta impulses�(t − Tk)

occurring in time according to the realizationTk of
a random variable with Poisson law distribution and
with random amplitudeY having assigned distribution
(independent of the random time arrivals). This Pois-
son process is thus represented in the form

Wp(t) =
N(t)∑
k=1

Yk�(t − Tk), (1)

whereN(t) is a Poisson counting process giving the
number of impulses in the time interval[0, t), Yk is
thekth realization of the random variableY, Tk is the
kth realization of the random variableT and �(·) is
the Dirac’s delta function. The stochastic process (1)
is termed asPoisson white noisesince its correlation
function is a Dirac’s delta function:

k2[Wp(t1)Wp(t2)] = RWp(t1, t2)

= �E[Y 2]�(t1 − t2) (2)

wherekj is the jth cumulant,� the mean number of
impulses per unit time andE[·] means ensemble aver-
age. From Eq. (2) it may be recognized that the power
spectral density function (PSD) is constant at overall
frequency range and this explains the nomenclature of
white noise. On the other hand the process (1) is not
normal because cumulants of order>2, are different
from zero

kj [Wp(t1),Wp(t2), . . . ,Wp(tj )]
= �E[Y j ]�(t1 − t2) · · · � (t1 − tj ) (3)

from Eq. (3) it is recognized that thejth cumulant is
the product of Dirac’s deltas and for this reason the



1090 A. Pirrotta / International Journal of Non-Linear Mechanics 40 (2005) 1088–1101

Poisson white noise is also termeddelta correlated
process.

Moreover, the Poisson white noiseWp(t) can be
considered as the formal derivative of the so-calledho-
mogeneous compound PoissonprocessC(t), defined
by

C(t) =
N(t)∑
k=1

YkU(t − tk), (4)

whereU(t) is the unit step function. If� tends to infin-
ity and at the same time�E[Y 2] keeps a constant value,
then the Poisson white noiseWp(t) tends towards the
normal white noiseWn(t). SinceWn(t) is normal, then
the correlation function remains the same form, as the
Poisson processWp(t), but higher-order cumulants are
zero. The normal white noiseWn(t) may be thought
as the formal derivative of the so-calledBrownian mo-
tion B(t). At the limit, starting from the Compound
Poisson process, as aforementioned, if� tends to in-
finity and at the same time�E[Y 2] remains constant,
the compound process itself becomes a Brownian mo-
tion. It will be emphasized that sample functions of
Poisson process and sample functions of normal white
noise are quite different, since in the former case, well
spaced impulses of finite amplitude appear, while in
the latter, impulses with infinitesimal amplitude occur
in a dense temporal space. In order to assess the valid-
ity of these statements increments of the processB(t)

andC(t) will be compared.B(t) andC(t) have, both,
independent increments: dB(t) = B(t + dt) − B(t)

represents the area of the infinitesimal impulse in the
time interval(t, t + dt), while dC =C(t + dt)−C(t)

may be either a finite quantity or zero, according to
whether the impulse falls into the interval(t, t + dt)
or not. For this reason it may be easily shown that

E[(dB(t))2] = q2 dt , (5a)

E[(dC(t))2] = �E[Y 2] dt . (5b)

From Eqs. (5) it is evident that increments ofB(t)

or C(t) may have identical value (for instance setting
q2 = �E[Y 2]). However sinceB(t) is Gaussian and
C(t) is not Gaussian, substantial differences arise from
higher-order statistics, as

E[(dB(t))k] = O(dtk/2), ∀k�2, (6a)

E[(dC(t))k] = �E[Y k] dt; ∀k >2. (6b)

From these equations it may be recognized that
an increment of the Wiener process is of order
dt1/2((O dB(t)=dt1/2), while the order of dC(t) may
not be established since moments of an increment of
Poisson process are all of the same order.

The last class of white noise is represented by the
�-stable Lévy white noiseprocessW�(t). In analogy to
the definition of the previous white noises, an�-stable
Lévy white noise may be defined as the formal deriva-
tive of a corresponding�-stable Lévy motionL�(t).
Increment of the Lévy motion dL�(t) are independent
(like dB(t) and dC(t)), and they are defined through
the characteristic function (CF)�dL�

(ϑ):

�dL�
(ϑ) = exp(−dt |ϑ|�); 0< ��2. (7)

An �-stable Lévy motion is non-normal and the mo-
ments do not exist, unless the momentsE[|dL|p] with
p< � and� 
= 2. For� = 2, the�-stable Lévy white
noise reverts to the Gaussian white noise. In general,
the smaller the�, the greater is the departure of the
�-stable Lévy white noise from the Gaussian one.

2.1. Generation of sample functions of white noise
processes

Each sample function ofW(t) is easily performed
for Poissonian white noise, simply by generating
samples of the random variableY with the assigned
distribution of the amplitudes and independent times
distributed according to Poisson law. Each sample
function is generated by attributing at each time say
Tk thekth realization ofY sayYk.

The normal white noise may be generated by subdi-
viding the time axis(0, T̄ ), whereT̄ is the observation
period which is usually divided into small intervals
usually of equal length,�t , and at each temporal step
it is attributed a realization of a random variable with
unit variance and hence the realization of increment
�Br(t) = B(tr + �t) − B(tr ) is defined by

�Br(t) = �t1/2Gr , (8)

whereGr are independent realizations of a zero mean
normal variable having varianceq2.

For the Lévy white noise the procedure is analo-
gous to the case of increments of Brownian motion,
increments of the Lévy motion are defined by

�L�(tr ) = �t1/�Xr , (9)
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whereXr are independent realizations of an�-stable
random variable generated as follows[28]:

Xr = sin�Ur

(cosUr)
1/�

[
cos(1 − �)Ur

Vr

](1−�)/�

, (10)

whereUr andVr are realizations of independent ran-
dom variables. Specifically,U has uniform distribu-
tion on [−�/2,�/2], andV has exponential distribu-
tion with unit mean.

From Eq. (10) the impulsive nature of the�-stable
Lévy white noise may be deduced. Recognize that,
for � 
= 2, the�-stable random variableX in Eq. (10)
has no moments. Samples ofX, in fact, do diverge as
U → ±�/2 for 1��<2, and asU → ±�/2 orV →
0 for �<1. That is, in a given interval�t samples of
X may be of order 1/�t1/� with non-zero probability.

In order to compare the order of magnitude of
�t1/�Xr , it is well known that for any�-stable vari-
able with zero skewness and shift, Prob{|X|>�} ∼
D��−� as � → ∞(D� = �(�) sin(��/2)/�). Hence
Prob{|X|>�t−1/�} ∼D� �t as�t → 0. Moreover, it
may be also shown that

E[dLj
�] = lim

�t→0
�tj/�

∫ �t−1/�

−�t−1/�
xjpX(x)dx

= kj dt , (11)

wherekj depends on�. As an example ifX is a Cauchy
random variable(� = 1), the PDF ofX is pX(x) =
1/�(1 + x2) andk2j = 2/�(2j − 1), while k2j+1 =
0, ) (j=1,2,3, . . .). If (�=0.5)(�=1) i.e.X is a Lèvy
random variable,pX(x) = x−3/2 exp(−1/2x)/

√
2�,

thenE[dLj

0.5] = kj dt , kj being a constant depending
on j that may be evaluated easily by MATHEMATICA
using Eq. (11). From these considerations, by compar-
ing Eq. (6b) with Eq. (11) it appears that an�-stable
Lèvy process behaves like a Poissonian one. The only
difference is that for Poissonian white noise in each
temporal interval dC(t)=0 unless an impulse occurs,
while for the Lèvy white noise in each temporal in-
terval, impulses of order of amplitudes ranging from
�t1/� and�t may occur depending on the realization
of Xr . In the limit case� = 2, sinceD� = 0, the am-
plitude of impulses is governed by�t1/2 and then the
order of magnitude of impulses in each temporal inter-
val is �t1/2, andE[dL2j

2 ] is an infinitesimal quantity
of dtj .

Fig. 1. (a) Poissonian white noise process and (b) Compound
Poisson process.

Once we define the procedure to generate white
noises,Wp(t), W�(t) and Wn(t), we observe three
sample functions of them represented are as in
Figs. 1–3. In Fig. 1a the non-normal white noise
Wp(t) is represented and the corresponding com-
pound Poisson process is represented inFig. 1b. From
the first figure one can observe that the sample func-
tion ofWp(t) is regular in all the time axis, except for
the timeTk in which the impulses occur. InFig. 2a
the non-normal white noiseW�(t) is depicted as long
as the impulses have finite magnitude, and the corre-
sponding�-stable Lévy motionL�(t) is reported in
Fig. 2b. FromFig. 2a one can see that in each selected
�t there is an impulse, but these are not comparable
in magnitude. InFig. 3a, a sample processWn(t) is
represented and the corresponding Brownian motion
process is represented inFig. 3b and it appears that
B(t) is continuous.
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Fig. 2. (a) Normal white noise and (b) Wiener process.

In the next section it will be shown that the prob-
lem of evaluating the response by using step-by-step
integration method for the three aforementioned cases
is exactly the same.

2.2. Monte Carlo simulation of non-linear systems
excited by samples of parametric white noise

In this section the digital simulation will be pre-
sented for both normal and non-normal white noise
processes. Because it is easier to understand the case
of non-normal starting from Poissonian white noise,
this case will be presented first.

2.3. Non-linear systems excited by samples of
Poissonian white noise

The Monte Carlo approach consists in generating
several sample functions of the input, in evaluating
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Fig. 3. (a)�-stable Lévy white noise process and (b)�-stable Lévy
motion.

the response for each sample function and then in per-
forming averages and other response statistics.

Let the dynamical system be given in the form

Ż(t) = f (Z, t) + g(Z, t)Wp(t), Z(t0) = Z0, (12)

wheref (Z, t) andg(Z, t) are deterministic non-linear
functions ofZ and t, Wp(t) is a sample function of
a Poissonian white noise, andZ0 is the initial condi-
tion that can be either deterministic or random whose
distribution is known and independent of the Dirac’s
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delta occurrences. Once the sample process is gener-
ated as above, intensities and locations of spikes are
known and then the problem is deterministic. Between
two subsequent deltas occurring at timesTk−1, Tk we
have to solve a non-linear problem of the form

Ż(t) = f (Z, t), ∀t : T +
k−1� t < T −

k . (13)

The initial condition for this problem isZ(T +
k−1),

where the apex+ means immediately after. By solv-
ing this problem we can arrive atZ(T −

k ), the value
of Z(t) immediately before the spike inTk. When
the spike occurs inTk, the problem of predicting
the response immediately after is a very hard task in
principle, and it is governed by

Ż(t) = f (Z, t) + g(Z, t)Yk�(t − Tk),

∀t : T −
k � t < T +

k (14)

with initial conditionZ(T −
k ) already known. Eq. (14)

can be rewritten in the form

dZ(t) = f (Z, t)dt + g(Z, t)Yk dU(t − Tk),

∀t : T −
k � t < T +

k , (15)

where U(·) is the unit step function. The integral
over the time intervalTk−	/Tk+	, with 	 arbitrary
small, can be written by selecting any partition
t1, t2, . . . , tj , . . . tn of the time intervalTk−	/Tk+	, as
follows:

Z(Tk+	) − Z(Tk−	) =
∫ Tk+	

Tk−	

f (Z, t)dt

+ Yk

∫ Tk+	

Tk−	

g (Z, t)dU(t − Tk). (16)

If 	 → 0, the first integral is zero, while the second
one is not a Riemann–Stieltjies integral because the
expression:

Yk

∫ Tk+	

Tk−	

g(Z, t)dU(t − Tk) = Yk lim
n→∞

�tmax→0

×
n∑

j=1

g(Z(t̄j ), t̄j )[U(tj − Tk)

− U(tj−1 − Tk)] (17)

depends on the intermediate point selectedt̄j , since
Z(t) exhibits a jump inTk−	/Tk+	. In expression (17),

Z(t̄j ) is the response at an intermediate pointt̄j be-
tweentj−1 and tj and�tmax is the maximum ampli-
tude of the intervals into which[Tk−	, Tk+	] has been
subdivided. Assuminḡtj = tj−1, one obtains aforward
integral, also called Itô integral (1951), and the sum
in Eq. (17) gives

Z(T +
k ) − Z(T −

k ) = Ykg (Z(T −
k ), Tk). (18)

Performing the summation in Stratonovich sense
(1951), i.e. the same as using a classical trapezoidal
rule, one gets

Z(T +
k ) − Z(T −

k ) = Ykg

(
Z(T +

k ) + Z(T −
k )

2
, Tk

)
.

(19)

From the non-linear relationship (19), one can obtain
Z(T +

k ) evaluated in Stratonovich sense[13]. However
at this stage, people can be perplexed, because in the
Dirac’s delta occurrence one can predict an approxi-
mate value of the jump and not the exact one. Indeed,
recentlyC̀addemi and Di Paola[25,26], Di Paola and
Pirrotta[27], give a correct answer for the response to
parametric impulses. The main steps for obtaining the
jump in the Dirac’s delta occurrence are here summa-
rized. They obtain the exact solution after the impulse,
simply, neglecting the first integral in Eq. (16) (as an
infinitesimal quantity with respect to the finite jump
in (T −

k , T +
k )) and then expanding the jump in a series,

�Zk = Z(T +
k ) − Z(T −

k ) = dZ(t)]T −
k

+ 1

2!d
2Z(t)

]
T −
k

+ 1

3! d3Z(t)
]
T −
k

+ · · · . (20)

The formal expansion (20) is not meaningless since
Z(t) is left continuous and the differentials are evalu-
ated inT −

k . Moreover, they showed that the series can
be written as follows:

�Zk =
∞∑
j=1

g(j)(Z(T −
k ), Tk)

j ! , (21)

whereg(j) can be evaluated in recursive form as fol-
lows:

g(j)(Z(t), t) = �g(j−1)(Z(t), t)

�Z
g(1)(Z(t), t);

g(1)(Z(t), t) = Ykg(Z(t), t). (22)
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From Eq. (22) one evaluates the coefficient of the
jump, to know the jump immediately after the impulse.

As an example we want to evaluate the jump for the
differential equation

Ż(t) = f (Z, t) + Z Yk�(t − Tk). (23)

Let Z(t−k ) be the solution before the Dirac’s delta in
Tk. The jump according to Eq. (21) can be written as

�Zk =
∞∑
j=1

Z(T −
k )Y

j
k

j ! = Z(T −
k )[exp(Yk) − 1]. (24)

This jump prediction is exactly coincident with that
evaluated using MATHEMATICA program. Analo-
gous coincidence may be found forg(Z, t) = Z2 for
which MATHEMATICA gives the jump value and se-
ries (21) is the expansion of the jump.

From this example one realizes that the jump de-
pends on the value immediately before the Dirac’s oc-
currence and on the intensityYk of the impulse. Re-
taining the first term in the series we obtain the jump
evaluated in the Itô sense. The first two terms give an
approximation of the jump evaluated in Stratonovich
sense. Such approximation gives accurate results de-
pending on the intensity of the Dirac’s deltaYk and on
the value of the response immediately before the spike
Z(T −

k ) as shown inFig. 4. It is to be remarked that if
the functiong(Z, t) in Eq. (12) does not depend onZ,
that if the case is external excitation, the rule (21) is
not in contrast with the classical result, as in fact only
the first term in the summation is necessary.

Once the correct rule of jump evaluation is defined,
let us go back to the problem of integrating sample
function of SDE driven by Poissonian parametric im-
pulse that will be performed straightforward. In fact
the step-by-step integration technique starts att = 0,
with initial conditionZ0 andZ(T1)−Z(t0)=f (Z0)�t
(the probability of an impulse occurrence int = 0 is
zero w.p. 1), and follows up to the first timeT1 in
which the impulse of amplitudeY1 occurs. The value
of Z(T −

1 ) is already known and the valueZ(T +
1 ) is

given by Eq. (24). This value is the initial condition
in the time interval (T1, T2), whereT2 is the realiza-
tion of the random variableT obeying the condition
T1<T2< · · ·<Tr .

For the case of 2-stable or�-stable white noise pro-
cess, at each temporal step an impulse occurs whose
amplitude is given by Eqs. (8) and (9), respectively.
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Fig. 4. (a) Jump versusYk for fixed value ofZ(T−
k
) = 1 and

different number of terms included in the summation (21) and
result of Eq. (24) (exact jump) and (b) Jump versusZ(T−

k
) for

fixed value ofYk = 0.5 and different number of terms included in
the summation (21) and result of Eq. (24) (exact jump).

By denoting as�Sk the impulse occurring in (tk, tk +
�t) (�Sk =�t1/2Gk for Gaussian and�Sk =�t1/� Xk

for �-stable white noise), the integral in the case of
parametric input is given by

�Z(tk) = Z(tk + �t) − Z(tk) = f (Z(tk), tk)�t

+
∞∑
j=1

g(j)(Z(tk), tk)

j ! (�Sk)j . (25)

It is obvious that if�Sk = �t1/2Gk, only the first
two terms in Eq. (25) need to be inserted for very
small�t since other terms in the summation (25) are
of higher order than�t . In passing we note that the
second order is just the Wong–Zakay or Stratonovich
correction term.
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On the contrary for�-stable Lévy white noises pro-
cess, the number of terms is strictly related to the
realization of the random variable in the step. For
example, if� = 0.5, by looking at Eq. (9), it seems
that�L�(t) is of order�t2, and hence the summation
in (25) may be disregarded (for�t very small). The
problem is that�-stable random variables have long
tails in the probability density function. For such we
have already discussed the probabilities that the real-
izationsXk of the random variableX may assume very
high value, e.g. of order 1/�t , 1/(�t)2, etc. It follows
that depending on the order of amplitude ofXk less or
more terms in the summation (25) are needed to have
a correct jump prevision in (tk, tk + �t).

Summing up, in the case of normal white noise
processes two terms in the summation (25) will be
included, while for the�-stable white noise or for
Poissonian white noise, more and more terms are nec-
essary for evaluating the response at the end of each
step depending on the realization of the�-stable ran-
dom variable in the step or by the value of the real-
ization of the amplitude for the Poissonian case.

It is worth remarking that the Poissonian white noise
has been defined and generated as a true white noise,
since it is constituted as a sequence of mathematical
impulses (Dirac’s delta). On the contrary, the Gaussian
white noise and the Lèvy white noise, whose genera-
tion is made according to the above-mentioned proce-
dure, are only a band limited white noise, with cutoff
frequency
c =1/2��t , since the selected time inter-
val �t is a finite quantity. However, if the frequency
content of the system is low with respect to the cut-
off frequency of the input, the system does not dis-
tinguish between the ideal white noise and the band
limited white noise.

3. Multi-degree of freedom non-linear systems

The previous concepts may be easily extended for
the case of MDOF systems. As aforementioned the
crucial point to perform the step-by-step analysis for
parametric white noise input process is related to the
jump evaluation in each temporal step. The analysis
for MDOF systems is based on the same procedure.
Let ann-degree of freedom non-linear system be given
in the form

Ż(t) = f (Z, t) +G(Z, t)W(t); Z(t0) = Z0, (26)

whereZ is then-state space variable vector,f (Z, t) is
ann vector of non-linear functions ofZ andt, G(Z, t)
is an(n × m) matrix of non-linear functions.

The first step consists in finding the response in the
sth interval. Let us suppose that theW(t)=Y�(t−Tk),
where Y is an m-vector whose components are
the strength of the Dirac’s delta in the interval
ts �Tk� ts + �t .

The increment of the vectorZ(t) in the interval
((ts/ts) + �t) is then given by

�Z(ts) = f (Z(ts), ts)�t +
∞∑
j=1

g(j)(Z(ts), ts)
j ! (27)

where,

g(Z(t), t) =G(Z(t), t)Y,

g(j)(Z(t), t) = (∇Zg(j−1)(Z(t), t))g(1)(Z(t), t),
g(1)(Z(t), t) = g(Z(t), t), (28)

and∇Zg(j−1)(Z(t), t) is the gradient operator of the
vector, i.e.

∇Zg(j)(Z(t), t)

=




�g(j)1

�Z1

�g(j)1

�Z2

�g(j)1

�Zn

�g(j)2

�Z1

�g(j)2

�Z2

�g(j)2

�Zn· · · · · · · · · · · ·
�g(j)n

�Z1

�g(j)n

�Z2

�g(j)n

�Zn




. (29)

4. Numerical applications

Accuracy and efficiency aspects are asserted by
means of a non-linear system driven at first by para-
metric Poissonian white noise, then by an�-stable
Lévy white noise and at last by a normal white noise.
The governing equation of motion is expressed in the
form:

Ż = aZ + bZ3 + �Z2Wp(t); Z(0) = 1. (30)

When no impulse occurs, the increment of the re-
sponse is simply given by

�Zs = Z(ts + �t) − Z(ts) = (aZ(ts) + bZ3(ts))�t ;
∀ts 
= Tk (31)
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Fig. 5. Response sample function to Poissonian white noise pro-
cess.

at impulse occurrence, Eq. (24) is particularized as

�Zk = Z(T +
k ) − Z(T −

k ) = (aZ(T −
k ) + bZ3(T −

k ))�t

+
5∑

j=1

�j Z(j+1)(T −
k )Y

j
k ; t = Tk, (32)

wherea=1,b=−1 and�=0.3. Regarding the Poisson
white noise processWp(t), this is characterized by the
mean number of impulse per unit time,� = 1, and the
distribution of the random variableY is Gaussian with
a zero mean and unit variance.

In Fig. 5 a sample function of response is depicted
showing the results performed by the proposed MC
by using 5 terms in the expression (32), and compared
with those obtained by a classical MC method. The
latter is performed by considering each impulse as
a physical one, distributed over a finite time interval
equal to�t = 0.01 s and by further subdividing this
time interval in 10 parts (see Appendix A).

As shown inFig. 5the results are totally overlapped,
highlighting the efficiency of the proposed method,
since there is a computational time saving power of
ten times, at least. Moreover in the same figure we
also report the Itô result, which considers only one
term of the series, and the Stratonovich result, which
considers two terms of the series. For these two last
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Fig. 6. Response sample function to�-stable Lévy white noise
process.

cases, the results in terms of response sample function
are quite different and this also influences the response
statistics in a very sensible way.

Analogous analysis has been performed for the same
system as before driven by a parametric 1-stable Lévy
white noise

Ż = aZ + bZ3 + �Z2W1(t); Z(0) = 1 (33)

with � = 0.3. Particularizing Eq. (25) one gets

�Z(tk) = Z(tk + �t) − Z(tk)

= (a Z(tk) + bZ3(tk))�t

+
10∑
j=1

�j (Z(tk))j+1(�tXk)
j . (34)

In Fig. 6, a sample function of response is depicted
and it shows the results obtained by the proposed MC
using 10 terms in the expression (34), and compares
it with those obtained by a classical MC method. The
latter is performed by considering each impulse as
a physical one, distributed over a finite time interval
equal to�t = 0.001 s and by further subdividing this
time interval in 10 parts. Also in this case there is
a computational time saving power, and the results
totally overlap and the proposed method is reliable.

Similar results and the inferred considerations for
the last example represented by the same dynamical
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Fig. 7. Response sample function to normal white noise process.

system driven by a normal white noise or a 2-stable
Lévy white noise are given taking�=0.8. In this case
an increment of the response function is given in the
form

�Z(tk) = Z(tk + �t) − Z(tk)

= (aZ(tk) + b Z3(tk))�t

+
2∑

j=1

�j (Z(tk))j+1(�t1/2Gk)
j (35)

and the results are depicted inFig. 7 having adopted
a �t = 0.01 s and for classical MC this interval has
been subdivided into two parts.

5. Conclusions

In this paper the problem of Monte Carlo simula-
tion of non-linear systems under Gaussian and non-
Gaussian white noise processes has been extensively
examined . The three types of white noise processes
(normal, Poissonian,�-stable) experience a common
feature: at each time interval they exhibit impulse oc-
currence. The main difference between them is in the
amplitude of impulse. For the Poissonian white noise,
for each sample function in the generic time interval
the amplitude of the impulse is either zero or a finite
quantity (the latter situation occurs when the impulse
is present in the generic interval). For Gaussian white

noise at each interval an impulse of order of magni-
tude�t1/2 occurs. While for the�-stable process, the
impulse is governed by the value of realization of the
random variable. It follows that if the realization of
the�-stable random variable assumes a finite quantity,
then the impulse is of order�t1/�, but in some in-
tervals because the probability density function of an
�-stable random variable has heavy tails, there is a fi-
nite probability that the order of magnitude of the im-
pulse is(1/�t)1/�. Keeping this machinery in mind,
the only problem in integrating non-linear differential
equation for each sample of white input is in evaluat-
ing response for impulsive input. In the case of exter-
nal excitation the problem in any case is trivial. In the
case of parametric excitation the integration at each
time interval has to be treated with care. We have two
possibilities, the first one is in considering in each time
interval the impulse as a physical one (i.e. the input is
constant in the interval) but having the same area of
the original Dirac’s delta occurrence. In this case the
interval will be subdivided into smaller and smaller
steps and then any integration rule may be used for.
Otherwise at each interval we know the realization of
the input and arrive at the asymptotic solution by us-
ing the series for the jump evaluation of the response.

In the paper the two ways have been compared
showing the usual step-by-step integration method.
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Appendix A. An advise on Monte Carlo simula-
tion for Non-linear systems under parametric im-
pulse

It will be worth remarking that, when dealing with
response of systems under parametric impulsive loads,
the Monte Carlo simulation has to be treated with care.
To better explain this consideration one may consider
a dynamical system under a single parametric impulse:

ż = f (z, t) + �g(z, t)�(t − t̄ ); z(0) = z0, (A.1)

wherez is the state variable,f (z, t) and g(z, t) are
non-linear functions of the response, upper dot means
time derivative,�(.) is the Dirac’s delta function and
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Fig. A.1. Physical impulse.

� is a real constant,z0 is the relevant initial condi-
tion. Generally applying the Monte Carlo simulation
the impulse is considered as a physical one, i.e. repre-
sented by a window function of finite duration� and
amplitude�/� in the intervalt̄–t̄ + � (seeFig. A.1 ).

The jump evaluation is given by

z(t̄ + �) − z(t̄−) = �
�

∫ t̄+�

t̄

g(z, 
)d
. (A.2)

From this equation it may be recognized that the jump
for a physical impulse depends on� and on the total
area ofg(z, 
) during the time at which the impulse
is present. From this consideration it appears that, due
to the strong variations ofg(z, t), during the impulse
occurrence, assuming the initial valueg(z, t̄−) is an
unacceptable approximation, in fact we must subdi-
vide the interval� into several substeps, no matter
the amplitude of�, although this latter is very small,
because the fundamental thing is the value of�. Af-
ter subdividing� into several substeps, only inside a
substep we can use what ever method one likes even
a forward difference integration scheme.

These considerations will be apparent by use of a
trivial but effective example given by

ż = �z�(t − 1); z(0) = 0.5 (A.3)

with chosen value of� = 10. This system is solved
in closed form using for instance “MATHEMATICA”
software as

z(t) = z(0)exp(�U(t − 1)) (A.4)

depicted inFig. A.2 and beingU(.) is the unit step
function.
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Fig. A.2. Exact solution of Eq. (A.3).
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Fig. A.3. Comparison between exact solution of Eq. (A.3) and
the response by using the physical impulse concept, choosing an
interval � = 0.01 and not subdividing it into substeps.

Evaluating the response by using the physical im-
pulse concept, choosing an interval� = 0.01 and not
subdividing it into substeps there is a substantial dif-
ference between this latter and the exact value, as de-
picted in Fig. A.3 and reported inTable 1. In these
tables are also reported the results using the series (21)
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Table 1

Time Physical Exact Eq. (A.5)
impulse (MATHEMATICA)
� = 0.01 2 terms 10 terms 25 terms

1.00 0.5 0.5 0.5 0.5 0.5
1.01 322 11013 30.5 6421 11013
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Fig. A.4. Comparison between exact solution of Eq. (A.3) and
the response by using the physical impulse concept, choosing an
interval � = 0.01 and subdividing it into two substeps.

such that the solution is given by

z(t) = z(0)


 ∞∑

j=1

�j

j !U(t − 1) + 1


 (A.5)

whereU(.) is the unit step function.
Moreover subdividing the interval from 1.00 to 1.01

into two substeps, the solution is not acceptable, as
stressed by results inFig. A.4 andTable 2.

A reliable solution is obtained subdividing the in-
terval into 100 substeps as stressed by the results re-
ported inFig. A.5 andTable 3.

At this point one may think to overcome this prob-
lem, just reducing much the value of the window�.
But this is totally wrong. For instance choosing an in-
terval�=0.0001 and subdividing it into 100 substeps,
the results are totally the same as before as the com-
parison betweenTables 3and4 or betweenFigs. A.5

Table 2

Time Physical Exact Eq. (A.5)
impulse (MATHEMATICA)
� = 0.01 2 terms 10 terms 25 terms

1.00 0.5 0.5 0.5 0.5 0.5
1.005 32.68 11013 30.5 6421 11013
1.01 2136 11013 30.5 6421 11013
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Fig. A.5. Comparison between exact solution of Eq. (A.3) and
the response by using the physical impulse concept, choosing an
interval � = 0.01 and subdividing it into 100 substeps.

Table 3

Time Physical Exact Eq. (A.5)
impulse (MATHEMATICA)
� = 0.01 2 terms 10 terms 25 terms

1.00 0.5 0.5 0.5 0.5 0.5
1.0001 0.5526 11013 30.5 6421 11013
1.0002 0.6107 11013 30.5 6421 11013
. . . . . . . . . . . . . . . . . .

1.0099 9965 11013 30.5 6421 11013
1.01 11013 11013 30.5 6421 11013

andA.6 stresses. That means we absolutely need to
subdivide the window� into several substeps, because
it is not a matter of the value of�, but of �.

Identical considerations may be made for other
forms of non-linearity such asg(z, t) = z2 or
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Table 4

Time Physical Exact Eq. (A.5)
impulse (MATHEMATICA)
� = 0.0001 2 terms 10 terms 25 terms

1.00 0.5 0.5 0.5 0.5 0.5
1.000001 0.5526 11013 30.5 6421 11013
1.000002 0.6107 11013 30.5 6421 11013
. . . . . . . . . . . . . . . . . .

1.000099 9965 11013 30.5 6421 11013
1.0001 11013 11013 30.5 6421 11013
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Fig. A.6. Comparison between exact solution of Eq. (A.3) and
the response by using the physical impulse concept, choosing an
interval � = 0.0001 and subdividing it into 100 substeps.

g(z, t) = z3 because the MATHEMATICA also gives
the exact solution and the value of the jump always
coincides with the value obtained by using series (21).
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