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Abstract

In this paper the response of nonlinear systems driven by parametric Poissonian white noise is examined.
As is well known, the response sample function or the response statistics of a system driven by external white noise processes is completely

defined. Starting from the system driven by external white noise processes, when an invertible nonlinear transformation is applied, the transformed
system in the new state variable is driven by a parametric type excitation. So this latter artificial system may be used as a tool to find out the proper
solution to solve systems driven by parametric white noises. In fact, solving this new system, being the nonlinear transformation invertible, we
must pass from the solution of the artificial system (driven by parametric noise) to that of the original one (driven by external noise, that is
known). Moreover, introducing this invertible nonlinear transformation into the Itô’s rule for the original system driven by external input, one can
derive the Itô’s rule for systems driven by a parametric type excitation, directly. In this latter case one can see how natural is the presence of the
Wong–Zakai correction term or the presence of the hierarchy of correction terms in the case of normal and Poissonian white noise, respectively.
Direct transformation on the Fokker–Planck and on the Kolmogorov–Feller equation for the case of parametric input are found.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of predicting the response statistics of linear or
nonlinear dynamical systems under white noise processes is a
very important task because the applications in many areas such
as physics, engineering, astrophysics and so on. Many books
(see e.g. [1–7]) have been devoted to this subject, termed as
stochastic differential calculus (SDC) and the corresponding
differential equations are termed as stochastic differential
equations (SDE).

In dealing with linear and nonlinear systems driven by
external white noise the literature is exhaustive and the
response statistics are given by applying the main tool of Itô’s
calculus [8]. In the case of external Poisson white noise the
response statistics are easily performed by properly extending
the Itô’s differential rule [9–12].

If the excitation is modulated by a function of the
response, the system is labelled as driven by parametric or
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multiplicative excitation, and the problem of predicting the
solution response is not trivial. So far, the response of a
system driven by a parametric normal white noise has been
evaluated by simply modifying the drift term accounting for
the Wong–Zakai or Stratonovich (WZ–S) corrective term,
for writing the differential equation in incremental form [13,
14]. At the beginning, some controversy arose about the
presence of this corrective term [15–17], but at present this
is widely used. The common motivation of this extra term, in
passing from the original equation to the Itô type stochastic
differential equation, is related to the local irregularity of the
Brownian motion process. However, the necessity of the extra
term may be easily explained by considering that increments
dB(t) of a Brownian process B(t) are of the order (dt)1/2

(0(dB) = dt1/2).
Di Paola and Falsone [18–20] dealt with general non-

Gaussian, delta correlated processes, which also include
the Poisson impulse process; for the latter they proposed
a series of corrective terms in passing from the original
differential equation to the Itô’s one. Since the response of
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such systems is framed into stochastic differential calculus, the
latter formulation has been susceptible of many interpretations
more or less in agreement. Intuitively, when dealing with
Poisson input, that is the formal derivative of a Compound
process C(t), characterized by having the expectations of order
dt (0(E[dC(t)]r ) = dt, (r = 1, 2, . . .)), the corrective terms
should be present more naturally than the case of normal
white noise. Also because, reminding that the normal white
noise is a limiting case of Poisson input, one might wonder
how could the response for normal parametric white noise
be a limiting case of a Poissonian one, if not even one
corrective term is taken into account [21–36]. However, the
aforementioned system could be considered as a system driven
by several parametric impulses. This problem, framed in a
deterministic field, has been solved by a formulation, which has
been proved from a mathematical point of view [37–41]. Just
this formulation coalesces with that obtained from stochastic
differential calculus [18–20], and stresses the need of all these
corrective terms.

The aim of this paper is to get the same formulation
by using a different and simple methodology. The response
sample function or the response statistics of a system driven by
external white noise processes is completely defined. Starting
from this system driven by external white noise processes,
when an invertible nonlinear transformation is applied, the
transformed system in the new state variable is driven by a
parametric type excitation, that is the talking point. So this latter
system is artificial because it represents a tool to find out the
proper solution to solve systems driven by parametric white
noises. In fact, solving this new system, being the nonlinear
transformation invertible, we must pass from the solution of
the artificial system (driven by parametric noise) to that of the
original one (driven by external noise, that is known). So this is
a tool to verify if the solution provided for the system driven by
parametric white noises is definitely correct or not. Well, this
simple idea is developed throughout this paper, demonstrating
that the need for these corrective terms is apparent, otherwise
we cannot find the right solution coming back to the original
system. Moreover, it is shown that by using the classical
relationship between the probability density function (PDF) of
the response of the system driven by external white noise and
the PDF of the new state variable obtained by the nonlinear
transformation, the Fokker–Planck (FP) equation and the
Kolmogorov–Feller (KF) equation for the case of parametric
input are readily found. Since both FP and KF equations are
entirely deterministic, the presence of the corrective terms is
now unequivocal. Furthermore they will be developed in an
easy way to find out the solution in terms of moment, of
probabilistic density and characteristic functions, and since the
nonlinear transformation doesn’t appear at the end of writing
the evolution of function response in terms of moments, of
probabilistic density, of characteristic functions, these are the
probabilistic function descriptors of linear or nonlinear systems
driven by parametric Poisson input. Obviously the response for
systems driven by either external Poisson input, or normal white
noise are limiting cases of the previous one.
2. Nonlinear differential equations driven by external
Poisson white noise

In this section some preliminary well-known concepts on
the nonlinear differential equations driven by external Poisson
white noise are briefly summarized for clarity sake as well as to
introduce appropriate symbologies.

Let the equation of motion of a nonlinear half oscillator be
given in the form:

Ẋ(t) = f (X, t) + Wp(t) (1)

where Wp(t) is a non-normal Poisson white noise process
characterized by having cumulants of order j, K j [·] expressed
as [42]

K j [Wp(t1), Wp(t2), . . . , Wp(t j )]

= λE[Z j
]δ(t1 − t2)δ(t1 − t3) . . . δ(t1 − t j ) (2)

being E[·] a stochastic average, δ(·) the Dirac’s delta function,
λ the mean number of impulses per unit time, Z a random
variable describing the impulse amplitudes occurring at random
times T ; the former and the latter are independent random
variables. In particular the distribution of Z is assigned and T
is distributed according to Poisson law. Explicit expression of
Wp(t) is usually cast in the form:

W (t) =

N (t)∑
k=1

Zkδ(t − Tk) (3)

where N (t) is the so called Poisson counting process giving the
total number of impulses in the time interval [0, t) regardless
their amplitude and with initial condition N (0) = 0 with
probability one.

The Poisson process may be obtained as the formal
derivative of the so called Compound Poisson process C(t)
defined as:

C(t) =

N (t)∑
k=1

ZkU (t − Tk). (4)

U (t) being the unit step function. Increments of the
Compound Poisson process C(t) are mutually independent and
the probabilistic descriptors of dC(t) are given as:

E[dC j (t)] = K j [dC(t)] = λE[Z j
]dt. (5)

Eq. (1) may be transformed into an incremental form as:

dX (t) = f (X, t)dt + dC(t). (6)

Let ϕ(X (t), t), be any scalar real valued function of X and
t , continuously differentiable on t and belonging to the class
C∞ with respect to X , (the class of infinite times differentiable
on X ), then the rule of differentiation of composite function is
given as:

dϕ(X (t), t) =
∂ϕ(X (t), t)

∂t
dt +

∂ϕ(X (t), t)

∂ X
dX

+

∞∑
j=2

1
j !

∂ jϕ(X (t), t)

∂ X j (dX) j (7)
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the presence of the summation at the right hand side of
Eq. (7) is explained by the observation that (dX (t)) j contains
terms (dC(t)) j whose statistics are all of order dt (see Eq. (5)).

Properly selecting ϕ(X (t), t), equations governing the
evolution of moments (ϕ(X, t) = X k), or the equation of
the characteristic function (ϕ(X, t) = exp(iϑ X), being ϑ a
real parameter) may easily be obtained. In order to get these
equations we have to take into account that dC(t) = C(t +

dt) − C(t) represents the future excitation that is independent
of the past history of the excitation and then the so called non-
anticipating property of Itô’s calculus holds true. That is, for
any nonlinear function ρ(X, t) of the response process X (t),
E[ρ(X, t)(dC(t))k

] = E[ρ(X, t)]E[(dC(t))k
].

By inserting ϕ(X, t) = exp(iϑ X) into Eq. (7), making the
stochastic average and dividing by dt , the following equation in
terms of characteristic function is expressed in two equivalent
forms:

∂φX (ϑ, t)

∂t
= iϑ E[ f (X, t) exp(iϑ X)]

+ λφX (ϑ, t)(φZ (ϑ) − 1) (8a)

∂φX (ϑ, t)

∂t
= iϑ E[ f (X, t) exp(iϑ X)]

+ λφX (ϑ, t)
∞∑
j=1

(iϑ) j

j !
E[Z j

] (8b)

where φX (ϑ, t) = E[exp(iϑ X)] is just the characteristic
function (CF).

An inverse Fourier transform yields the two equivalent
expressions of the Kolmogorov–Feller (KF) equation governing
the evolution of the PDF pX (x, t):

∂pX (x, t)

∂t
= −

∂

∂x
( f (x, t)pX (x, t)) − λpX (x, t)

+ λ

∫
∞

−∞

pX (x − ξ, t)pZ (ξ)dξ (9a)

∂pX (x, t)

∂t
= −

∂

∂x
( f (x, t)pX (x, t))

+ λ

∞∑
j=1

(−1) j

j !
E[Z j

]
∂ j

∂x j [pX (x, t)]. (9b)

If λ tends to infinity and at the same time λE[Y 2
] keeps a

constant value say q2, then the Poisson white noise reverts to
a Gaussian white noise W0(t), moreover dC(t) reverts to the
increment of the Brownian motion B(t) with intensity q2, and
in differential rule (7) only the second term in the summation
at the r.h.s. must be retained since the order of dB(t) is (dt)1/2.
Then, in this case, if E[Z ] = 0, the classical Fokker–Planck
equation is fully restored.

∂pX (x, t)

∂t
= −

∂

∂x
( f (x, t)pX (x, t)) +

q2

2
∂2 pX (x, t)

∂x2 . (10)

3. Nonlinear transformation into stochastic differential
equation

As mentioned before, starting from a system driven by
external white noise processes, when an invertible nonlinear
transformation is applied, the transformed system in the new
state variable is driven by a parametric type excitation. So
this latter system is artificial because, throughout this paper,
it is used as a tool to find out the proper solution to elucidate
systems driven by parametric white noises. In fact, solving
this new system, being the nonlinear transformation invertible,
we must pass from the solution of the artificial system to
that of the original one (that is already known). This concept
is developed and the FP and KF equations for the case of
parametric excitation will be derived by means of nonlinear
transformation on SDE.

Now let us suppose that a new state variable Y (t) is
constructed as a nonlinear invertible transformation of the
stochastic response X (t) of the SDE (1) as follows:

Y (t) = u(X (t)); X (t) = v(Y (t)). (11a,b)

Being u(·) and v(·) deterministic nonlinear functions.
According to classical rules of derivative composite

functions Ẏ (t) may be written as:

Ẏ (t) =
∂u(X (t))

∂ X
Ẋ = G(Y, t)Ẋ (12)

where G(Y, t) is [∂u(X (t))/∂ X ] evaluated in X = v(Y ).
By multiplying Eq. (1) by G(Y, t), the following differential
equation is easily found:

Ẏ = F(Y, t) + G(Y, t)Wp(t) (13)

where:

F(Y, t) = G(Y, t) f (v(Y ), t). (14)

From Eq. (13) it is evident that, starting from SDE driven by
external load, when nonlinear transformation occurs, the new
SDE governing the evolution of the new state variable Y (t) is
driven by a parametric type excitation.

3.1. Nonlinear transformation for a system with normal
excitation

It will be convenient to start from the system excited by
normal white noise and then examine the system under Poisson
white noise. If in Eq. (13) the driving process Wp(t) tends
towards a normal white noise W0(t), as has been previously
stated in Eq. (7), the summation will be extended retaining only
two terms. Selecting ϕ(X (t), t) = u(X (t)) we get:

du(X (t)) =

2∑
j=1

1
j !

∂ j u(X (t))

∂ X j (dX (t)) j (15)

where dX (t) is given in Eq. (6), in which dC(t) is substituted
by dB(t), and introducing the following relationships:

u(X (t)) = Y (t);
∂u(X (t))

∂ X
= G(1)(Y, t) = G(Y, t);

∂2u(X (t))

∂ X2 =
∂G(1)(Y, t)

∂Y
G(Y, t) = G(2)(Y, t)

(16)
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into Eq. (15), it leads to:

dY (t) = F(Y, t)dt + G(Y, t)dB(t) +
1
2

G(Y, t)(dB(t))2. (17)

That exactly coalesces with the classical Itô equation
associated with Eq. (13) for the case of parametric normal white
noise. Moreover, in Eq. (17) the Wong–Zakai or Stratonovich
correction term explicitly appears. It will be emphasized that
since in Eq. (17) the nonlinear transformation does not appear
we may state that when we directly start from Eq. (13) the
differential rule associated with Eq. (13) (for Wp(t) = W0(t))
is that reported in Eq. (17).

The differential rule for any scalar real valued function
ϕ(Y, t) is written as:

dϕ(Y, t) =
∂ϕ(Y, t)

∂t
dt +

∂ϕ(Y, t)

∂Y
dY

+
1
2

∂2ϕ(Y, t)

∂Y 2 (dY )2 (18)

and by selecting ϕ(Y, t) = exp(iϑY ), making stochastic
average, taking into account the nonanticipating property of
Itô calculus and dividing by dt , the equation governing the
evolution of the CF is readily found:

∂φY (ϑ, t)

∂t
= iϑ E[F(Y, t) exp(iϑY )]dt

+
q2

2
iϑ E

[
G(y)

∂G(y)

∂y
exp(iϑY )

]
+

q2

2
(iϑ)2 E[G2(y) exp(iϑY )] (19)

and then an inverse Fourier transform exactly restores the FP
equation for the case of parametric noise:

∂pY (y)

∂t
= −

∂

∂y

(
F(y, t)pY (y) +

q2

2
G(y)

∂G(y)

∂y
pY (y)

)
+

q2

2
∂ 2(pY (y)G2(y))

∂y2 . (20)

Summing up: when a nonlinear transformation is applied in
a nonlinear system driven by external normal white noise, the
equation in the new state variable is driven by a parametric
white noise. By using the classical Itô rule given in Eq. (15)
we get the Itô differential equation in which the Wong–Zakai
or Stratonovich correction term explicitly appears, and the FP
equation for parametric normal white noise is obtained.

A different way for finding Eq. (20) may be pursued by
considering that since the two processes X (t) and Y (t) are
related to each other by invertible nonlinear transformations the
fundamental relationship:

pX (x)dx = pY (y)dy (21)

holds true. This equation is entirely deterministic and since
Y (t) = u(X (t)); X (t) = v(Y (t)), Eq. (21) may be rewritten
in the form:

pX (x) = pY (y)G(y) (22)
and then the following identities hold true:

∂pX (x)

∂t
= G(y)

∂pY (y)

∂t
(23a)

∂

∂x
( f (x, t)pX (x)) = G(y)

∂

∂y
(F(y, t)pY (y)) (23b)

∂

∂x
(pX (x)) = G(y)

∂

∂y
(G(y)pY (y)) (23c)

∂2

∂x2 (pX (x)) = G(y)
∂

∂y

(
G(y)

∂

∂y
(G(y)pY (y))

)
(23d)

By directly transforming Eq. (10) we exactly get the FP
equation for parametric white noise. The latter observation
is really important because Eqs. (21)–(23) are entirely
deterministic, no irregular stochastic processes like the white
noise appear and then it is evident that the equation for
parametric excitation may be simply obtained by the case of
external excitation. On this solid ground the extension to the
case of Poissonian white noise is immediate.

3.2. Nonlinear transformation for a system with Poisson
excitation

Let us start from Eq. (7) in which now all the terms have
to be retained because, according to Eq. (5) all power of
the statistics of the increment of the process C(t) are all
infinitesimal and of the same order dt . We now perform the
nonlinear transformations given in Eq. (11) and we extend:
Eq. (16)

u(X (t)) = Y (t);
∂u(X (t))

∂ X
= G(1)(Y, t) = G(Y, t);

∂ j u(X (t))

∂ X j =
∂G( j−1)(Y, t)

∂Y
G(Y, t) = G( j)(Y, t)

(24)

into Eq. (15); extended to all terms, it leads to:

dY (t) =

∞∑
j=1

1
j !

G( j)(Y, t)( f (X, t)dt + dC) j . (25)

By neglecting higher order terms than dt , the following
equation ruling the evolution of Y (t) is obtained as:

dY (t) = F(Y, t)dt +

∞∑
j=1

1
j !

G( j)(Y, t)(dC) j . (26)

This equation exactly coincides with that proposed by Di
Paola and Falsone [18–20] on the basis of difference between
increments and differentials.

Looking at Eq. (26), some observations may be pointed out:

(i) In passing from Eq. (13) enforced by parametric impulses,
the incremental rule (15) gives a hierarchy of correction
terms;

(ii) since in Eq. (26) the nonlinear transformation does not
explicitly appear, then the rule in passing from Eq. (13)
to the rule (26) is always valid, also if the original system
with external excitation is unknown;
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(iii) all the terms in the summation (26) are of the same order
(dt), then they cannot be neglected;

(iv) if Wp(t) → W0(t) that is the case of normal white noise
dC(t) → dB(t) and then only the first two terms of the
summation (26) appear, and the second one coincides with
the Wong–Zakai or Stratonovich [13,14] correction term.

Once Eq. (26) is derived, the differential rule for any scalar
real valued function ϕ(Y, t) is written as:

dϕ(Y, t) =
∂ϕ(Y, t)

∂t
dt +

∞∑
k=1

∂kϕ(Y, t)

∂Y k (dY )k

=
∂ϕ(Y, t)

∂t
dt +

∞∑
k=1

∂kϕ(Y, t)

∂Y k

×

(
F(Y, t) dt +

∞∑
j=1

G( j)(Y )

j !
(dC) j

)k

. (27)

It is worth remarking that if one leaves out the terms in the
summation (26) for j > 2 an entirely different and simpler rule
of differentiation of composite functions emerges.

By putting ϕ(Y, t) = exp(iϑY ), the Eq. (27), neglecting
higher infinitesimals than dt specifies into:

d exp(iϑY ) = iϑ exp(iϑY )F(Y, t)dt +

∞∑
k=1

(iϑ)k

×

(
∞∑
j=1

G( j)(Y )

j !
(dC) j

)k

exp(iϑY ) (28)

making stochastic average and using the non-anticipating
property:

dφY (ϑ, t) = iϑ E[exp(iϑY )F(Y, t)]dt +

∞∑
k=1

(iϑ)k

× E

exp(iϑY )

(
∞∑
j=1

G( j)(Y )

j !
(dC) j

)k
 (29)

performing the stochastic average in the second term of right
hand side of Eq. (29) is a very hard task. In order to obtain
explicit expression it should be stressed that since the processes
X (t) and Y (t) are related to each another by invertible nonlinear
transformations the fundamental relationship (21) remains
valid.

Since Y (t) = u(X (t)), X (t) = v(Y (t)), it may be rewritten
Eq. (21) in the form:

pX (x) = pY (y)G(y) (30)

and then

∂pX (x)

∂t
= G(y)

∂pY (y)

∂t
;

∂

∂x
( f (x, t)pX (x)) = G(y)

∂

∂y
(F(y, t)pY (y))

(31)

∂k

∂xk (pX (x)) = G(y)Θk[G(y), {pY (y)}]. (32)
The operator at the right hand side of Eq. (32) is given as:

Θk[G(y), {pY (y)}]

=


∂

∂y

(
G(y)

∂

∂y

(
G(y) · · ·

∂

∂y
(G(y)pY (y))

))
︸ ︷︷ ︸

k−fold

 . (33)

Taking into account Eqs. (30), (33) and (9b) the
Kolmogorov–Feller equation extended to the case of parametric
type excitation is obtained simply:

∂pY (y)

∂t
= −

∂

∂ y
(F(y, t)pY (y))

+ λ

∞∑
k=1

(−1)k

k!
Θk[G(y), {pY (y)}]E[(Z)k

]. (34)

It coincides with the equation proposed in [24] and obtained
starting directly from Eq. (6) and making an inverse Fourier
transform of Eq. (29) with lengthy manipulations. It should
be remarked that since in Eq. (34) no explicit dependence
on the original nonlinear transformation is present, it may be
stated that the Kolmogorov–Feller equation for parametric type
excitation associated with a differential equation of the form
Ẏ = F(Y, t) + G(Y, t) Wp(t) may be given by Eq. (34).
On the other hand, in some papers, [34,35] when parametric
type excitation appears the rule of differentiation of composite
function used has been treated simply by writing the SDE in
terms of increment in the form:

dY (t) = F(Y, t)dt + G(Y, t)dC(t) (35)

that is neglecting the terms
∑

∞

j=2 G j (Y, t)(dC) j/j !; using
Eq. (27) the differential equation (29) reduces to:

∂φY (ϑ, t)

∂t
= iϑ E[exp(iϑY )F(Y, t)]

+ λ

∞∑
k=1

(iϑ)k

k!
E[Z k

]E[exp(iϑY )(G(Y ))k
] (36)

and the Kolmogorov–Feller equation, using Eq. (35) for
increments is then rewritten as:

∂pY (y)

∂t
= −

∂

∂ y
(F(y, t)pY (y))

+ λ

∞∑
k=1

(−1)k

k!

∂k

∂yk [G(Y )pY (y, t)]E[(Z)k
]. (37)

That is entirely different from Eq. (34). However, if Eq. (37)
is used, starting from a SDE driven by external input making
the nonlinear transformation described above, then pX (x)dx 6=

pY (y)dy and consequently the correspondent results obtained
by Eq. (37) are incorrect.

Moreover, if Wp(t) → W0(t) using Eq. (34) the classical
FPK is restored, and we use Eq. (37), the Wong–Zakai
correction term disappears and this is meaningless.
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4. Moment equation approach

Previous sections have dealt with the response statistics of
a system driven by parametric white noises either normal or
Poissonian. However, it is also important to provide response
statistics through the moment equation approach. In order to
use this for investigating external Poisson pulses, (Eq. (1)) two
different strategies may be pursued. The first one involves the
differential rule (7) by putting ϕ(X, t) = X k(t); by so doing
the differential equation governing the evolution of E[X k

] may
easily be obtained in the form:

Ė[X k
] = k E[X k−1 f (x, t)]

+ λ

k∑
j=1

k(k − 1) · · · (k − j + 1)

j !
E[Z j

]E[X k− j
].

(38)

This is a linear set of a differential equation in the unknown
moments. The problem of moments is connected with the fact
that the means E[X k−1 f (x, t)] are still unknown but they
may be computed if the CF or PDF is known. In the case
of polynomial nonlinearities that is f (x, t) =

∑r
j=1 a j X j ,

Eq. (38) constitutes an infinite hierarchy in the sense that in
the moment equation of order k, moments of order E[X k+r−1

]

appear and then, unless the case is of r = 1 linear case,
higher order moments appear that require some closure for
approximate solutions.

The second way is to consider the nonlinear transformation
X k

= Y , averaging Eq. (26); the first order moment of
Y is simply obtained, and may be seen to coincide with
Eq. (38). It should be stressed that in passing between Ẏ =

F(Y, t) + G(Y, t)Wp(t) and dY (t) if the latter is taken as
dY (t) = F(Y, t)dt + G(Y, t)dC(t), that is by neglecting in
the summation at the right hand side of Eq. (26) all the terms
with j ≥ 2 (see e.g. [34,35]); then the moment equations
obtained directly by using the rule are valid for external
Poisson white noise and those obtained by making the nonlinear
transformation do not coincide. Such an example is:

Ẋ(t) = −ρX (t) + Wp(t); (ρ > 0) (39)

then the moment equations up to the fourth order, using the rule
(7), are:

Ė[X ] = −ρE[X ] + λE[Z ] (40a)

Ė[X2
] = −2ρE[X2

] + 2λE[X ]E[Z ] + λE[Z2
] (40b)

Ė[X3
] = −3ρE[X3

] + 3λE[X2
]E[Z ]

+ 3λE[X ]E[Z2
] + λE[Z3

] (40c)

Ė[X4
] = −4ρE[X4

] + 4λE[X3
]E[Z ] + 6λE[X2

]E[Z2
]

+ 4λE[X ]E[Z3
] + λE[Z4

]. (40d)

Now considering the nonlinear transformation Y = X2, then
X = Y 1/2, G(Y ) = 2

√
Y , F(Y ) = −2ρY and the parametric

differential equation ruling Y = X2 is then:

Ẏ (t) = −2ρY (t) + 2
√

Y Wp(t). (41)
It follows that G(1)(Y ) = 2
√

Y ; G(2)(Y ) = 2; G( j)(Y ) =

0; ∀ j > 2, and then the Itô differential equation connected with
Eq. (41) Becomes:

dY (t) = −2ρY (t)dt + 2
√

Y dC(t) + (dC(t))2. (42)

Making stochastic averages and dividing by dt the following
equation ruling the evolution of E[Y] is obtained:

Ė[Y ] = −2ρE[Y ] + 2λE[Y 1/2
]E[Z ] + λE[Z2

] (43)

but E[Y ] = E[X2
] and then Eq. (43) exactly coincides with

Eq. (40b); it is worth noting that if Eq. (36) is used, that is
dY (t) = −2ρY (t)dt +2

√
Y dC(t), then making the average the

last term in the Eq. (43) disappears and E[Y] does not coincide
with E[X2

]. Moreover, for the solution X = −Y 1/2, it has been
obtained the same result.

For the case of Y = X3, X = Y 1/3 then G(Y ) = 3Y 2/3,
F(Y ) = −3ρY . It follows that:

Ẏ (t) = −3ρY (t) + 3Y 2/3Wp(t). (44)

The increment of this equation, according to the rule given
in Eq. (26) is written in the form:

dY (t) = −3ρY (t)dt + 3Y 2/3dC(t)

+ 3Y 1/3(dC(t))2
+ (dC(t))3. (45)

By making the stochastic average and dividing by dt the
equation ruling the evolution of E[Y ] = E[X3

] is easily
obtained in the form:

Ė[Y (t)] = −3ρE[Y ] + 3λE[Y 2/3
]E[Z ]

+ 3λE[Y 1/3
]E[Z2

] + λE[Z3
] (46)

that exactly coincides with Eq. (40c).
Moreover by putting Y = X4, X = Y 1/4 then G(Y ) =

4Y 3/4, F(Y ) = −4ρY . It follows that

Ẏ (t) = −4ρY (t) + 4Y 3/4Wp(t). (47)

The increment of this equation, according to the rule given
in Eq. (26) is written in the form:

dY (t) = −4ρY (t)dt + 4Y 3/4dC(t) + 6Y 1/2(dC(t))2

+ 4Y 1/4(dC(t))3
+ (dC(t))4. (48)

By making the stochastic average and dividing by dt the
equation ruling the evolution of E[Y ] = E[X4

] is written as:

Ė[Y (t)] = −4ρE[Y ] + 4λE[Y 3/4
]E[Z ] + 6λE[Y 1/2

]E[Z2
]

+ 4λE[Y 1/4
]E[Z3

] + λE[Z4
] (49)

that exactly coincides with Eq. (40d). Moreover, for the solution
X = −Y 1/4, the same result has been obtained. However, this
may happen when starting from Eq. (41) and evaluating the
square value of Y = X2. As a conclusion of this section it may
be stated that in the case of multiplicative Poisson white noise
if the rule given in Eq. (26) is not applied, results in the form of
moments are totally wrong.
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5. Some remarks on the direct integration of the response
to sample functions of parametric Poissonian white noise

In this section some elementary considerations on the
necessity of the summation given in Eq. (26) will be introduced.
In the case of Poissonian white noise input the general
expression for generating sample functions of such a process
is given in Eq. (3), then each sample function is constituted
by well-spaced impulses; then for Monte Carlo simulation two
independent random variables need to be generated: (times T ,
giving the instants whenever an impulse occurs and another
random variable Z indicates the intensity of the impulses). In
the case of external excitation we have to solve a differential
equation in the form:

Ẋ(t) = f (X, t) +

N (t)∑
k=1

Zkδ(t − Tk) (50)

supplemented by the initial condition. Let us suppose that in
the generic sample function, Tk−1 and Tk are two subsequent
instants at which an impulse occurs. Supposing that we know
the response immediately after the impulse occurrence Tk−1,
then during the time lag [Tk−1, Tk] the forcing function is
always zero and the response may be easily obtained by
integrating the ordinary differential equation Ẋ(t) = f (X, t)
supplemented by the appropriate initial condition, that is the
system response immediately after the impulse occurrence
Tk−1. Then labelling T −

k = limε→0 Tk−ε and T +

k =

limε→0 Tk+ε the time immediately before and after the new
impulse occurrence, all the responses up to T −

k may be easily
found by integrating Ẋ(t) = f (X, t) with initial condition
T +

k−1. At Tk an impulse occurs, then we have to solve the
differential equation:

Ẋ(t) = f (X, t) + Zkδ(t − Tk); T −

k ≤ t ≤ T +

k (51)

and the response at T +

k is given as:

J (Tk) = X (T +

k ) − X (T −

k ) = Zk (52)

That is, the response exhibits a jump J (Tk) whose amplitude
is just the intensity of the impulse. It is worth noting that the
jump does not depend on f (X, t). The response immediately
after the impulse is simply X (T +

k ) = X (T −

k ) + Zk , that is, in
the time interval [T −

k , T +

k ] the differential equation may be put
in the form:

Ẋ(t) = Zkδ(t − Tk); ∀t Tk−ε ≤ t ≤ Tk+ε. (53)

Let us now suppose that the nonlinear transformation is
made, then in the time interval [T −

k , T +

k ] the equation becomes:

Ẏ (t) = G(Y, t)Zkδ(t − Tk); ∀t Tk−ε ≤ t ≤ Tk+ε (54)

The crucial point is: what is the jump in the case of parametric
impulse? The response to this equation may be found in many
previous papers [37–41], here revisited in the light of the
nonlinear transformation seen before. Using the rule given in
Eq. (15) (extended to all terms) we get:

du(X) =

∞∑
j=1

1
j !

∂ j u(X)

∂ X j [ZkdU (t − Tk)]
j (55)

being U (·) the unit step function. Simply by taking into account
Eqs. (22) and (23) and the fact that dU (t − Tk) = 1 if t > Tk
we obtain:

J (Y (Tk)) = Y (T +

k ) − Y (T −

k ) =

∞∑
j=1

G( j)(Y (T −

k ))

J !
Z j

k . (56)

That is, the correct prevision of the jump is given as a
numerical series in Eq. (26). Since in Eq. (26) the nonlinear
transformation equation does not explicitly appear (56) is valid
for the differential equation given in Eq. (54). In passing, we
note two crucial aspects:

(i) the exact jump prevision in this case depends on impulse
amplitude and on the value of G(Y ) evaluated immediately
before the impulse occurrence;

(ii) the series (56) is drastically different from other expression
available in the literature [36] but agrees with some cases
obtained with MATHEMATICA program in some cases
(see eg. G(Y ) = Y, G(Y ) = Y k).

From consideration (i) it is obvious that since the only
quantities of interest for the correct evaluation of the jump are
the value of G( j)(Y (T −

k )) immediately before the impulse, the
non-anticipating property of Itô calculus is preserved.

As a conclusion of this section it is emphasized that,
when parametric impulsive processes occur (as in the case
of Poissonian, normal, Lèvy white noise) then Monte Carlo
simulation has to be performed by properly integrating the
parametric impulse using the series (56). In the case of normal
white noise input, we generate sample function by subdividing
the time lag into small intervals say 1t /. At each individual
interval we put a spike whose area in the interval [Tk, Tk + 1t]
is Rk1t1/2 being Rk a realization of a normal random variable
with assigned variance. In this case Eq. (15), neglecting higher
order terms than 1t ;

Y (Tk + 1t) − Y (Tk) = f (Y (Tk))1t

+
R2

k

2
G(2)(Y, Tk)1t. (57)

Also in this case the Wong–Zakai or Stratonovich correction
term comes out in a natural way.

6. Conclusions

In this paper a different perspective on the presence of
corrective terms of nonlinear stochastic differential equations
enforced by parametric type normal or non-normal Poisson
white noise has been introduced. The main idea is that
performing some invertible nonlinear transformation on a
stated variable of a nonlinear differential equation enforced
by external input, is transformed into the differential
equation governing the evolution of the new state variable
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in which parametric excitation appears. In the former
case no correction terms are necessary in order to derive
Fokker–Planck–Kolmogorov equation or Kolmogorov–Feller
equation. In the latter case, when dealing with normal white
noise, the drift term will be modified taking into account the
Wong–Zakai or Stratonovich correction term. The common
motivation of this extra term in passing from the original
equation to the Itô type stochastic differential equation, is
commonly related to the local irregularity of the Brownian
motion process. In this paper it has been shown that the
necessity of the extra term is related to the fact that the normal
white noise may be considered as an impulsive process whose
individual impulses are of the order of magnitude 1t1/2.

In Poissonian white noise, well spaced impulses occur
randomly distributed in time according to Poisson law with
random amplitude. The problem is that for such systems,
at each impulse occurrence, if the system is parametric the
response exhibits a jump whose evaluation strongly influences
the results. Here it has been shown in a very easy way
using nonlinear transformation, that the jump prediction
requires a numerical series, taking into account that for
the first term results may be quite different depending on
the impulse amplitude as well as on the values of the
nonlinear parametric function evaluated before the impulse
occurrence. The numerical series for jump prevision at each
impulse occurrence agrees with some simple cases treated
with Mathematica program and has been numerically tested
for other cases always giving correct jump prevision. Once
the jump prevision is made all the stochastic differential
calculus for the case of parametric Poisson white noise may
be performed in a very easy way. In this paper, however, by
using nonlinear invertible transformation and assuming that
the mass of probability related intervals must be equal, the
Kolmogorov–Feller equation extended to the case of Poisson
white noise is immediately found to agree with previous
results available in the literature, but this is controversial.
In this paper the extension of Kolmogorov–Feller equation
is made always using deterministic concepts, starting from
the Kolmogorov–Feller equation for external Poisson white
noise. The main conclusion is that either working in terms
of probability or in terms of moments, or at least for single
impulses, in the case of parametric Poisson white noise if
no extra terms are included, then the results in terms of
probabilistic descriptors are incorrect.
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