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a b s t r a c t

A numerical method is presented to compute the response of a viscoelastic Duffing oscil-
lator with fractional derivative damping, subjected to a stochastic input. The key idea
involves an appropriate discretization of the fractional derivative, based on a preliminary
change of variable, that allows to approximate the original system by an equivalent system
with additional degrees of freedom, the number of which depends on the discretization of
the fractional derivative. Unlike the original system that, due to the presence of the frac-
tional derivative, is governed by non-ordinary differential equations, the equivalent system
is governed by ordinary differential equations that can be readily handled by standard inte-
gration methods such as the Runge–Kutta method. In this manner, a significant reduction
of computational effort is achieved with respect to the classical solution methods, where
the fractional derivative is reverted to a Grunwald–Letnikov series expansion and numer-
ical integration methods are applied in incremental form. The method applies for fractional
damping of arbitrary order a (0 < a < 1) and yields very satisfactory results. With respect to
its applications, it is worth remarking that the method may be considered for evaluating
the dynamic response of a structural system under stochastic excitations such as earth-
quake and wind, or of a motorcycle equipped with viscoelastic devices on a stochastic road
ground profile.

� 2012 Published by Elsevier B.V.

1. Introduction

Fractional derivative modeling of linear viscoelastic behavior is a crucial topic in materials science. The first contributions
in this field trace back to Nutting [1], who observed that the stress–strain data sets of many complex materials do exhibit a
power-law relaxation, and to Gemant [2] and Bosworth [3], the first to propose a fractional derivative model for the consti-
tutive behavior of viscoelastic media. The use of fractional derivatives to fit experimental data was later pursued by Scott-
Blair and Gaffyn [4] and Caputo [5]. However, a first attempt to provide a theoretical basis for a fractional derivative mod-
eling of viscoelasticity was due, at the beginning of the 80s, to Bagley and Torvik, who framed their model in the context of
molecular theory [6]. They also showed how, in order to capture the frequency-dependence of damping properties in some
viscoelastic materials, fractional derivatives are more appropriate than classical linear models such as the Kelvin–Voigt mod-
el [7,8].

In the last two decades, fractional derivative modeling of viscoelasticity has been applied in numerous studies and, for its
capability of describing complex material behaviors at a macroscopic level, in form of equations involving a small number of
parameters, it is now a well-established approach to viscoelastic media [9–12]. Also, a significant effort has been devoted to
develop corresponding, suitable mechanical interpretations of the fractional derivative models of viscoelasticity: for
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instance, Glöckle and Nonnenmacher [13] have interpreted the fractional relaxation equation in the context of non-Markov-
ian process theory, while Heymans [14] has shown that fractional constitutive equations can be obtained from a simple rhe-
ological model. Based on the relation between fractional derivatives and fractals theory described by Nigmatullin [15],
attempts to derive fractional derivative viscoelastic models from corresponding fractals mechanical model have been pur-
sued by Schiessel and Blumen [16], Heymans and Bauwens [17].

In structural engineering analysis, fractional derivatives have been widely used to model the damping force in systems
equipped with viscoelastic dampers, for vibration or seismic isolation purposes [18–21]. Analytical results and experimental
data have been found in a very good agreement by Makris and Constantinou [22,23]. To compute the deterministic response
of single- or multi-degree of freedom linear systems with a fractional derivative damping, various strategies have been pro-
posed. They involve the Laplace transform [7,8], the Fourier Transform [24], numerical methods [18,25,26] or an eigenvector
expansion [27,28]. On the other hand, due to the relevance of stochastic excitations in structural engineering, several methods
compute the response statistics have been developed. In this context, a frequency domain approach has been pursued by Spanos
and Zeldin [29] and by Rudinger [30]. Alternatively, based on the Laplace transform of the motion equation the system response
has been given a time-domain Duhamel integral expression [31] involving pertinent Green’s functions, the latter being available
in a closed form for certain values of the fractional derivative order a. A similar approach, where the Duhamel integral is derived
instead based on the Fourier transform of the motion equation, has been later developed by Kun et al. [32]. Further, the response
of a system involving two fractional derivatives has been recently addressed by Huang et al. [33], who have derived a Duhamel
integral expression by using the Laplace transform in conjunction with the weighted generalized Mittag–Leffler function.

As further, relevant developments in the stochastic analysis of systems with a fractional derivative damping, also a few
recent studies concerning nonlinear systems are worth mentioning. Contributions are due to Huang and Jin [34], to Spanos
and Evangelatos [35] and to Chen and Zhu [36]. The first have used a classical stochastic averaging procedure for single-de-
gree-of-freedom (SDOF) systems with strongly nonlinear restoring forces and a fractional derivative light damping, subjected
to a Gaussian white noise [34]. The second have proposed a general frequency domain solution based on statistical linear-
ization; results have been presented for a Duffing oscillator with a fractional derivative damping, subjected to a Gaussian
white noise [35]. The third have studied the stochastic jump and bifurcation of a Duffing oscillator with fractional derivative
damping using the stochastic averaging method [36].

The purpose of this paper is to propose an efficient time domain simulation to compute the stochastic response of a Duf-
fing oscillator with fractional damping. In the authors’ opinion, this issue may be of particular interest since, on one hand, the
time domain simulation still provides a necessary benchmark solution for any approximate method based on stochastic cal-
culus (such as, for instance, the stochastic averaging already used by some authors [34,36]). On the other hand, existing time
domain simulations based on standard numerical approximations of the fractional derivative such as, for instance, the Grun-
wald–Letnikov (GL) or the Riemann–Liouville (RL) series expansions, do involve a high computational effort. This shall be
considered indeed as an inevitable consequence of using either the GL or the RL series expansions, which reflect the nature
of the fractional derivative operator, that is an operator with memory and, as such, introduce in the motion equation at time t
the full displacement response until that time.

With the aim to overcome these shortcomings, in this paper an appropriate discretization of the fractional derivative
operator, already and successfully used by the authors for linear systems [37], will be generalized to the Duffing oscillator.
It will be shown that the proposed discretization leads to an equivalent system of first order differential equations in terms of
state variables, that can be easily solved with a significant reduction of computational effort as compared to the classical
solution methods, where the fractional derivative is discretized by the GL or RL series expansion and standard Newmark
methods are applied in an incremental form.

With respect to the applications, it is worth remarking that the proposed method may be considered in many fields of
engineering. For instance, in the structural field it can be a valid tool to compute the response of a structure equipped with
viscoelastic devices under stochastic excitations as earthquake or wind. Further, in mechanical engineering the off-road and
racing motorcycles or cars require advanced sophisticated setup of suspensions to improve the comfort and the safety of the
rider. Since, due to the ground roughness, suspensions usually experience extreme and stochastic excursions (suspension
stroke) to perform their function, it is required to solve nonlinear differential equations governing the motion of the motor-
cycle or the car equipped with viscoelastic dampers and excited by the stochastic road ground profile. The proposed method
lends itself to this purpose.

2. Fractionally-damped duffing oscillator driven by stochastic input

Very recently, studies dealing with viscoelastic media have revealed their fundamental interpolating feature between the
pure elastic and the pure viscous behavior. In fact, the viscoelastic materials experience both creep and relaxation phases
that are well described by a constitutive law ruled by a fractional differential equation [38]. In this context, the structural
SDOF system depicted in Fig. 1 and governed by the motion equation

m€xðtÞ þ fV ðtÞ þ fEðtÞ ¼ f ðtÞ ð1Þ
is considered. Specifically, in Eq. (1) m is the mass and f(t) is the forcing function; fE(t) = kx(t) + ex3(t) is the restoring force of
the nonlinear spring, where k is the linear stiffness and e controls the amount of nonlinearity; fV ðtÞ ¼ CaðDaxÞðtÞ is the
attenuation force of the viscoelastic damper, being Ca the fractional damping coefficient and ðDaxÞðtÞ a a-order fractional
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derivative that interpolates the purely elastic behavior (a = 0) and the purely viscous behavior (a = 1). The motion equation
can be obviously reverted to the ordinary form

€xðtÞ þ caðDaxÞðtÞ þx2
0xðtÞ þ e0x3ðtÞ ¼ f0ðtÞ ð2Þ

where ca = Ca/m, x0 ¼
ffiffiffiffiffiffiffiffiffiffi
k=m

p
is the natural frequency, e0 = e/m and f0(t) = f(t)/m.

It is worth pointing out that many definitions exist for fractional derivative [39], and the most commonly used is the Rie-
mann–Liouville (RL) definition,

ðDaxÞðtÞ ¼ 1
Cð1� aÞ

d
dt

Z t

�1

xðsÞ
ðt � sÞa

ds; 0 < a < 1; ð3Þ

where C(�) is the Gamma function.
In Ref. [38] it has been demonstrated that the power-law decay can be considered as the best function for fitting relax-

ation tests on viscoelastic materials. Further, it can be shown that upon introducing a power-law decay function as a relax-
ation function into the kernel of the Boltzmann integral for viscoelastic materials, the fractional constitutive law involving
the Caputo’s derivative is retrieved. On this solid ground, in this paper we will refer to the Caputo’s definition for fractional
derivative, i.e.

ðDa
CxÞðtÞ ¼ 1

Cð1� aÞ

Z t

�1

_xðsÞ
ðt � sÞa

ds; 0 < a < 1 ð4Þ

On the other hand, it is known that the Caputo’s fractional derivative for a quiescent system at t = 0 or for systems that
operate from t = �1 coincides with the RL fractional derivative [39].

Particular attention will be devoted to the response of system (1) to a stochastic input. That is, the solution to the follow-
ing equation will be sought

€xðtÞ þ caðDa
CxÞðtÞ þx2

0xðtÞ þ e0x3ðtÞ ¼ wðtÞ; ð5Þ
where w(t) is an arbitrary sample of a zero mean Gaussian white noise W(t) of power spectral density S0, i.e.
E½Wðt1ÞWðt2Þ� ¼ 2pS0dðt1 � t2Þ (as customary, stochastic processes are denoted by capital letters while an arbitrary sample
is denoted by the corresponding lower case).

In a recent study [35] it has been shown that, upon discretizing the fractional derivative by the GL series expansion, Eq. (5)
can be recast in incremental form and the time domain simulation can be pursued by classical Newmark methods.

In this paper, an original time domain simulation will be proposed, based on an alternative discretization of the fractional
derivative. The results are validated by a comparison with those obtained by using the Newmark method in conjunction with
the GL series expansion, as shown in the next sections.

2.1. Time domain simulation via Grunwald–Letnikov approximation

The implementation of the Newmark method in conjunction with the GL series expansion can be briefly described as
follows.

Consider a quiescent system at t = 0. As explained in Ref. [35], if the time interval of interest [0, tf] is discretized into
equally-spaced steps Dt, for the fractional derivative (4) at time ti = iDt the following GL series expansion can be adopted:

ðDa
CxÞðtÞ ¼ lim

Dt!0
Dt�aPi

k¼0
GLkxðti � kDtÞ; ð6Þ

where GLk are coefficients to be computed in the recursive form

GLk ¼
k� a� 1

k
GLk�1; GL0 ¼ 1:0 ð7Þ

Based on Eq. (7), the motion equation (5) at a time instant ti = iDt can be written as

€xðtiÞ þ caDt�aPi

k¼0
GLkxðti � kDtÞ þ qðtiÞ ¼ f ðtiÞ; ð8Þ

( ) ( ),x t f tm

,k ε
,Cα α

Fig. 1. Duffing SDOF system with a fractional damping.
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where, for conciseness, symbol q(t) has been introduced, i.e. qðtÞ ¼ x2
0xðtÞ þ e0x3ðtÞ. Then computing the difference between

the two motion equations written, respectively, at the time instant ti+1 = (i + 1)Dt and at the time instant ti, yields the follow-
ing equation in incremental form

D€xiþ1 þ caDt�aGL0Dxiþ1 þ Dqiþ1 ¼ Dfiþ1 � caDt�aPi; ð9Þ

In Eq. (9) D€xiþ1 ¼ €xðtiþ1Þ � €xðtiÞ, Dqi+1 = q(ti+1) � q(ti), Dfi+1 = f(ti+1) � f(ti) and

Pi ¼
Pi

k¼1
GLk½xðtiþ1 � kDtÞ � xðti � kDtÞ� þ GLiþ1xð0Þ; ð10Þ

where x(0) is the initial condition for x(t). Recognize that Pi in Eq. (10) is a pseudo-force, depending on the displacement re-
sponse history until the time instant ti. At this stage, in order to avoid time-consuming iterations to compute the nonlinear
increment Dqi+1, the following simplifying assumption can be generally made [40]

Dqiþ1 ¼ k̂iDxiþ1; ð11Þ

where k̂i ¼ x2
0 þ 3e0x2ðtiÞ is the initial tangent slope at time instant ti and Dxi+1 = x(ti+1) � x(ti) is the displacement increment.

In this manner, a typical Newmark method can be applied to the motion equation (8) written in incremental form [40]. Spe-
cifically, if the linear acceleration method is adopted, the displacement increment is given as

Dxiþ1 ¼ Dpiþ1=ðk̂i þ caDt�aGL0 þ 6Dt�2Þ; ð12Þ

where Dpi+1 is the effective loading increment

Dpiþ1 ¼ Dfiþ1 � caDt�aPi þ 6 _xðtiÞ=Dt þ 3€xðtiÞ ð13Þ

Upon computing the displacement increment (12), the velocity increment can be also derived as

D _xiþ1 ¼ 3Dxiþ1=Dt � 3 _xðtiÞ � €xðtiÞDt=2; ð14Þ

where the acceleration €xðtiÞ is given by the motion equation set at time ti. It is then apparent that, when using a Newmark
method in conjunction with the GL approximation (6), at any time instant ti a summation over the displacement response
until t = ti is generally required to compute both the pseudo-force (10) and the acceleration €xðtiÞ. These summations do lead,
in general, to a significant computational effort.

2.2. Time domain simulation via proposed method

In this section the proposed method will be introduced, in attempt to overcome the shortcomings of the approach dis-
cussed in the previous section. Let us consider the following variable transformation [41]:

z ¼ y2ðt � sÞ; dz ¼ 2ðt � sÞydy: ð15Þ

that leads to rewrite the Gamma function as

CðaÞ ¼
Z 1

0
e�zza�1dz ¼ 2

Z 1

0
e�y2ðt�sÞy2a�1ðt � sÞady ð16Þ

Being 1/C(1 � a) = C(a) sin (ap)/p, Eq. (16) allows the coefficient 1/C(1 � a) involved in the Caputo’s fractional derivative
(see Eq. (4)) to be written as

1
Cð1� aÞ ¼

2 sinðapÞ
p

Z 1

0
e�y2ðt�sÞy2a�1ðt � sÞady: ð17Þ

In this manner, the fractional derivative in the motion equation (5) can be recast in the form (the system is quiescent at
t = 0)

ðDa
CxÞðtÞ ¼ la

Z 1

0

Z t

0
e�y2ðt�sÞ _xðsÞdsy2a�1dy: ð18Þ

where la = 2sin(ap)/p.
Next, denote by uy(t) the following integral in Eq. (18):

uyðtÞ ¼
Z t

0
e�y2ðt�sÞ _xðsÞds ð19Þ

The latter can be considered as a Duhamel integral giving the response of the Maxwell half oscillator in Fig. 2, assumed to
be quiescent at t = 0:

_uyðtÞ þ y2uyðtÞ ¼ _xðtÞ; uyð0Þ ¼ 0: ð20Þ
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Fig. 2. Maxwell oscillator, Eq. (20).

Fig. 3. Displacement sample for e0 = 2.0 and a = 0.3.

Fig. 4. Velocity sample for e0 = 2.0 and a = 0.3.
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Recognize that the system has a stiffness coefficient equal to y2, a unit damping coefficient and is forced by the velocity
response _xðtÞ. At this stage, it follows that the fractional derivative of x(t), given in Eq. (4), may be rewritten as

ðDa
CxÞðtÞ ¼ la

Z 1

0
uyðtÞy2a�1dy ð21Þ

and may be approximated in discrete form as

ðDa
CxÞðtÞ � la

X1
j¼1

uyj
ðtÞy2a�1

j Dy ð22Þ

where yj = jDy and, due to Eq. (20), uyj
ðtÞ is the response of the first order differential equation

_uyj
ðtÞ þ y2

j uyj
ðtÞ ¼ _xðtÞ; j ¼ 1;2 � � �1 ð23Þ

Fig. 5. Displacement 2nd moment for e0 = 2.0 and a = 0.3.

Fig. 6. Velocity 2nd moment for e0 = 2.0 and a = 0.3.
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Based on Eq. (22), the response of the Duffing oscillator with fractional damping (5) can be obtained solving the following
system of ordinary differential equations:

€xðtÞ þ cala

X1
j¼1

uyj
ðtÞy2a�1

j Dyþx2
0xðtÞ þ e0x3ðtÞ ¼ wðtÞ;

_uyj
ðtÞ þ y2

j uyj
ðtÞ ¼ _xðtÞ

ð24Þ

Eq. (24) show that, based on the proposed discretization of the fractional derivative (22), the original system (5), that is
governed by a non-ordinary differential equation, can be reverted to the equivalent system (24) of ordinary differential equa-
tions, that can be readily handled by standard numerical integration methods, getting rid of the all displacement response
history until the time instant ti. Obviously, for numerical purposes a finite number n of terms shall be retained in the first
equation of system (24). This leads to the finite degree of freedom linear system

Fig. 8. Velocity pdf for e0 = 2.0 and a = 0.3.

Fig. 7. Displacement pdf for e0 = 2.0 and a = 0.3.
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_z ¼ Dzþ vwðtÞ; ð25Þ

where

zT ¼ ½ x _x uy1
uy2

� � � uyn � ð26Þ

is the vector of state variables of order (n + 2),

D ¼

0 1 0 0 � � � 0
�x2

0 � e0x2 0 �calay2a�1
1 Dy �calay2a�1

2 Dy � � � �calay2a�1
n Dy

0 1 �y2
1 0 � � � 0

0 1 0 �y2
2 � � � 0

� � � � � � � � � � � � � � � � � �
0 1 0 0 0 �y2

n

2
66666664

3
77777775

ð27Þ

Fig. 9. Displacement sample for e0 = 4.0 and a = 0.6.

Fig. 10. Velocity sample for e0 = 4.0 and a = 0.6.
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is the system matrix and

vT ¼ ½0 1 0 0 � � � 0 � ð28Þ

is the forcing column vector.
At this point, it is apparent that, any time-domain numerical integration scheme can be applied to compute the response

of the nonlinear system (25). In this paper the Runge–Kutta method will be adopted.

3. Numerical applications

The accuracy of the proposed method is assessed by computing the solution of Eq. (5) that, as already stated in the intro-
duction, may be considered the motion equation of either a structural system or a motorcycle equipped with viscoelastic

Fig. 11. Displacement 2nd moment for e0 = 4.0 and a = 0.6.

Fig. 12. Velocity 2nd moment for e0 = 4.0 and a = 0.6.
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devices, to a Gaussian white noise, for two sets of system parameters. The first set is given by x0 = 1.0, ca = 1.0, e0 = 2.0 and
a = 0.3; the second set by x0 = 1.0, ca = 1.0, e0 = 4.0 and a = 0.6. In both cases the power spectral density of the Gaussian
white noise is S0 = 1/2p. An arbitrary sample w(t) is built based on the well-known spectral representation in Ref. [42],
according to which w(t) is given by

wðtÞ ¼
PM
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4S0Dx

p
cosðxkt þukÞ: ð29Þ

where Dx is a constant step on the frequency axis, xk = kDx are M equally-spaced frequencies and uk are M random phases
uniformly distributed in the interval [0,2p]. Specifically, Dx = 0.05 rad/s and M = 500 are selected. The time-domain simu-
lation is carried out generating 1000 samples.

The proposed method is implemented by discretizing the y-axis (see Eq. (22)) in two subintervals: the first is [0,0.05] and
is divided into 200 equal steps; the second is [0.05,20.0] and is divided into 100 steps. Therefore, a total number of n = 300
additional Maxwell oscillators is considered to build the equivalent system (25). The discretization parameters of the y-axis
are selected to provide an accurate description of the integrand function e�zza�1 in Eq. (16), taking into account that
z = y2(t�s).

The response of the equivalent system (25) is obtained by using the Runge–Kutta method and then compared to the re-
sponse of the original system (5) as obtained based on Eq. (9). Specifically, the latter is implemented by using the linear
acceleration method, discussed in detail in Section 2.1. A time step Dt = 0.002 is adopted for both the Runge–Kutta method
and the linear acceleration method.

For e0 = 2.0 and a = 0.3, Fig. 3 through Fig. 8 show the results for both the displacement and the velocity process. In par-
ticular, Figs. 3 and 4 show an arbitrary sample over the time interval 0 � 200 s; the variances over the same interval are
shown in Figs. 5 and 6, while Figs. 7 and 8 show the corresponding probability density functions (pdfs). In Figs. 7 and 8
the Gaussian pdfs that feature the same variance as the displacement process (Fig. 7) and the same variance as the velocity
process (Fig. 8) are also shown. The same results for e0 = 4.0 and a = 0.6 are then reported in Fig. 9 through 14 through Fig. 14.

All the results show that the proposed solution and the standard solution of the original system (5), built by using the
linear acceleration method in conjunction with the GL approximation of the fractional derivative, are in a very good agree-
ment. It can be then stated that the proposed solution appears capable of reproducing the system behavior with a significant
accuracy, in terms of time response to individual samples of the input process as well as in terms of response statistics. In
this respect, recognize that the displacement and the velocity pdfs appear both very accurate over the whole domain, i.e.
around the peak value and the tails (Figs. 7–8 and Figs. 13–14).

It shall be remarked, however, that for the two cases under study the proposed solution allows a significant reduction of
computational effort, to an extent up to 35%, with respect to the standard solution of the original system (5). This can be
explained by recognizing that, to obtain the response increment at each time step by the standard solution of the original
system (5), time-consuming summations are required over the terms of the GL approximation of the fractional derivative,
to compute the pseudo-force term Pi, Eq. (10), and the acceleration €xðtiÞ at the beginning of each time step.

Fig. 13. Displacement pdf for e0 = 4.0 and a = 0.6.
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4. Conclusions

The stochastic response of a viscoelastic Duffing oscillator with fractional damping has been computed via a new, efficient
time domain simulation. The key-idea is to discretize the fractional operator based on an appropriate change of variable. In
this manner, the original motion equation has been reverted to a system involving additional oscillators, the number of
which depends on the adopted discretization, that can be readily handled by a standard Runge–Kutta method. Since numer-
ical applications show that, in general, a limited number of additional oscillators is requested to achieve accurate results, the
method proves to be computationally efficient as compared to existing time domain simulations involving the classical GL
discretization of the fractional derivative in conjunction with a standard Newmark method, due to the time-consuming sum-
mations that the latter requests over the displacement response history. Similar conclusion could be drawn for alternative
classical discretizations of the fractional derivative, such as the RL discretization.
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