173 research outputs found

    Radiant energy absorption studies for laser propulsion

    Get PDF
    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas

    Laser-heated rocket studies

    Get PDF
    CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient

    Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment

    Get PDF
    The interaction of air bubbles with surfaces immersed in water is of fundamental importance in many fields of application ranging from energy to biology. However, many aspects of this topic such as the stability of surfaces in contact with bubbles remain unexplored. For this reason, in this work, we investigate the interaction of air bubbles with different kinds of dispersive surfaces immersed in water. The surfaces studied were polydimethylsiloxane (PDMS), graphite, and single layer graphene/PDMS composite. X-ray photoelectron spectroscopy (XPS) analysis allows determining the elemental surface composition, while Raman spectroscopy was used to assess the effectiveness of graphene monolayer transfer on PDMS. Atomic force microscopy (AFM) was used to study the surface modification of samples immersed in water. The surface wettability has been investigated by contact angle measurements, and the stability of the gas bubbles was determined by captive contact angle (CCA) measurements. CCA measurements show that the air bubble on graphite surface exhibits a stable behavior while, surprisingly, the volume of the air bubble on PDMS increases as a function of immersion time (bubble dynamic evolution). Indeed, the air bubble volume on the PDMS rises by increasing immersion time in water. The experimental results indicate that the dynamic evolution of air bubble in contact with PDMS is related to the rearrangement of surface polymer chains via the migration of the polar groups. On the contrary, when a graphene monolayer is present on PDMS, it acts as an absolute barrier suppressing the dynamic evolution of the bubble and preserving the optical transparency of PDMS

    Microwave-assisted methacrylation of chitosan for 3D printable hydrogels in tissue engineering

    Get PDF
    Light processable natural polymers are highly attractive for 3D printing of biomedical hydrogels with defined geometries and sizes. However, functionalization with photo-curable groups, such as methacrylate or acrylate groups, is required. Here, we investigated a microwave-assisted process for methacrylation of chitosan to replace conventional methacrylation processes that can be time consuming and tedious. The microwave-assisted methacrylation reaction was optimized by varying the synthesis parameters such as the molar ratio of chitosan to the methacrylic agent, the launch and reaction times and process temperature. The optimized process was fast and efficient and allowed tuning of the degree of substitution and thereby the final hydrogel properties. The successful methacrylation and degree of substitution were verified by H-1 NMR and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The influence of the degree of methacrylation on photo-rheology, mechanical stiffness, swelling degree and gel content was evaluated. Furthermore, favourable 3D printability, enzymatic degradability, biocompatibility, cell migration and proliferation were demonstrated giving promise for further applications in tissue engineering

    Flexible and reusable parylene C mask technology for applications in cascade impactor air quality monitoring systems

    Get PDF
    The development of traceable new methodologies to quantify elemental air pollutants in particulate matter (PM) supports modernization of methods used in air quality monitoring networks in Europe. In the framework of the EURAMET EMPIR AEROMET II project, the combination of cascade impactor aerosol sampling and total reflection X-ray fluorescence elemental spectroscopy (TXRF) was investigated. This technique requires a traceable calibration based on reference samples. This paper describes a new, simple and effective method to produce such reference samples using flexible, reusable, and low-cost parylene C shadow masks, fabricated by photolithographic steps. These shadow masks can be used to produce reference samples that mimic the Dekati cascade impactor's deposition patterns by applying as-prepared micro stencils to 30 mm acrylic substrates and evaporating a reference material (Ti) in arrangements of thin circular dots. The highly flexible direct patterning of acrylic discs with reference material, otherwise impossible with conventional photolithography, allows multiple reusing of the same micro stencils. The aspect ratios of the dots could be repeated with an error less than 4%. A first set of standard reference samples for the 13 stages of the Dekati cascade impactor was produced and preliminary TXRF measurements of the deposited Ti masses were performed. The centricity of the deposition patterns turned out to be an important parameter for the quality of the TXRF results. The parylene mask technology for the production of reference samples turns out to be a promising new approach for the traceable calibration of TXRF spectrometers for the quantification of element concentrations in environmental aerosol samples but, due to its great versatility, it could be used for several other micropatterning applications on conventional and unconventional substrates

    Fast TiO2 sensitization using the semisquaric acid as anchoring group

    Get PDF
    Metal-free dye molecules for dye-sensitized solar cells application can avoid some of the typical drawbacks of common metal-based sensitizers, that are high production costs, relatively low molar extinction coefficient in the visible region, limited availability of precursors, and waste disposal issues. Recently we have proposed an innovative organic dye based on a simple hemi-squaraine molecule (CT1). In the present work, the effect of the sensitization time of the TiO2 photoelectrode in the dye solution is studied with the aim of optimizing the performance of CT1-based DSCs. Moreover, the addition of the chenodeoxycholic acid (CDCA) as coadsorbent in the dye solution at different concentrations is investigated. Both CT1-sensitized mesoporous TiO2 photoanodes and complete solar cells have been fully characterized in their electrical and absorption properties. We have found that the best photoconversion performances are obtained with 1 hour of impregnation time and a 1 mM CDCA concentration. The very fast kinetics in dye adsorption, with optimal sensitization steps almost 15 times faster than conventional Ru-based sensitizers, confirms the theoretical predictions and indicates a strong interaction of the semisquaric acid group with the anatase surface. This result suggests that this small molecule can be a promising sensitizer even in a continuous industrial process

    Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications

    Full text link
    This paper is devoted to reviewing the latest results achieved in solid-state lasers based on thulium-doped mixed-sesquioxide ceramics, i.e., (Lu,Sc,Y)2O3 . The near-and mid-infrared regions are of interest for many applications, from medicine to remote sensing, as they match molecular fingerprints and cover several atmospheric transparency windows. These matrices are characterized by a strong electron–phonon interaction—which results in a large splitting of the ground state—and by a spectral broadening of the optical transition suitable for developing tunable and short-pulse lasers. In particular, the manuscript reports on the trivalent thulium laser transitions at 1.5, 1.9, and 2.3 µm, along with the thermal and optical characteristics of the (Lu,Sc,Y)2O3 ceramics, including the fabrication techniques, spectroscopic and optical properties, and laser performances achieved in different pumping regimes, such as continuous-wave (CW), quasi-CW, and pulsed modes. A comparison of the performance obtained with these mixed-sesquioxide ceramics and with the corresponding crystals is reported. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas

    Get PDF
    We report on a simple electrochemical system able to capture gaseous carbon dioxide from a gas mixture and convert it into syngas. The capture/release module is implemented via regeneration of NaOH and acidification of NaHCO3 inside a four-chamber electrochemical flow cell employing Pt foils as catalysts, while the conversion is carried out by a coupled reactor that performs electrochemical reduction of carbon dioxide using ZnO as a catalyst and KHCO3 as an electrolyte. The capture module is optimized such that, powered by a current density of 100 mA/cm2 , from a mixture of the CO2–N2 gas stream, a pure and stable CO2 outlet flow of 4–5 mL/min is obtained. The conversion module is able to convert the carbon dioxide into a mixture of gaseous CO and H2 (syngas) with a selectivity for the carbon monoxide of 56%. This represents the first all-electrochemical system for carbon dioxide capture and conversion

    Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems

    Get PDF
    The understanding of multiphase flow phenomena occurring in porous media at the pore scale is fundamental in a significant number of fields, from life science to geo and environmental engineering. However, because of the optical opacity and the geometrical complexity of natural porous media, detailed visual characterization is not possible or is limited and requires powerful and expensive imaging techniques. As a consequence, the understanding of micro-scale behavior is based on the interpretation of macro-scale parameters and indirect measurements. Microfluidic devices are transparent and synthetic tools that reproduce the porous network on a 2D plane, enabling the direct visualization of the fluid dynamics. Moreover, microfluidic patterns (also called micromodels) can be specifically designed according to research interests by tuning their geometrical features and surface properties. In this work we design, fabricate and test two different micromodels for the visualization and analysis of the gas-brine fluid flow, occurring during gas injection and withdrawal in underground storage systems. In particular, we compare two different designs: a regular grid and a real rock-like pattern reconstructed from a thin section of a sample of Hostun rock. We characterize the two media in terms of porosity, tortuosity and pore size distribution using the A* algorithm and CFD simulation. We fabricate PDMS-glass devices via soft lithography, and we perform preliminary air-water displacement tests at different capillary numbers to observe the impact of the design on the fluid dynamics. This preliminary work serves as a validation of design and fabrication procedures and opens the way to further investigations
    corecore