107 research outputs found

    Are morphologic features of recent small subcortical infarcts related to specific etiologic aspects?

    Get PDF
    Background: Recent small subcortical infarcts (RSSIs) mostly result from the occlusion of a single, small, brain artery due to intrinsic cerebral small-vessel disease (CSVD). Some RSSIs may be attributable to other causes such as cardiac embolism or large-artery disease, and their association with coexisting CSVD and vascular risk factors may vary with morphological magnetic resonance imaging (MRI) features. Methods: We retrospectively identified all inpatients with a single symptomatic MRI-confirmed RSSI between 2008 and 2013. RSSIs were rated for size, shape, location (i.e. anterior: basal ganglia and centrum semiovale posterior cerebral circulation: thalamus and pons) and MRI signs of concomitant CSVD. In a further step, clinical data, including detailed diagnostic workup and vascular risk factors, were analyzed with regard to RSSI features. Results: Among 335 RSSI patients (mean age 71.1 ± 12.1 years), 131 (39%) RSSIs were >15 mm in axial diameter and 66 (20%) were tubular shaped. Atrial fibrillation (AF) was present in 44 (13.1%) and an ipsilateral vessel stenosis > 50% in 30 (9%) patients. Arterial hypertension and CSVD MRI markers were more frequent in patients with anterior-circulation RSSIs, whereas diabetes was more prevalent in posterior-circulation RSSIs. Larger RSSIs occurred more frequently in the basal ganglia and pons, and the latter were associated with signs of large-artery atherosclerosis. Patients with concomitant AF had no specific MRI profile. Conclusion: Our findings suggest the contribution of different pathophysiological mechanisms to the occurrence of RSSIs in the anterior and posterior cerebral circulation. While there appears to be some general association of larger infarcts in the pons with large-artery disease, we found no pattern suggestive of AF in RSSIs

    Periventricular magnetisation transfer abnormalities in early multiple sclerosis

    Get PDF
    OBJECTIVE: Recent studies suggested that CSF-mediated factors contribute to periventricular (PV) T2-hyperintense lesion formation in multiple sclerosis (MS) and this in turn correlates with cortical damage. We thus investigated if such PV-changes are observable microstructurally in early-MS and if they correlate with cortical damage. METHODS: We assessed the magnetisation transfer ratio (MTR) in PV normal-appearing white matter (NAWM) and in MS lesions in 44 patients with a clinically isolated syndrome (CIS) suggestive of MS and 73 relapsing-remitting MS (RRMS) patients. Band-wise MTR values were related to cortical mean thickness (CMT) and compared with 49 healthy controls (HCs). For each band, MTR changes were assessed relative to the average MTR values of all HCs. RESULTS: Relative to HCs, PV-MTR was significantly reduced up to 2.63% in CIS and 5.37% in RRMS (p<0.0001). The MTR decreased towards the lateral ventricles with 0.18%/mm in CIS and 0.31%/mm in RRMS patients, relative to HCs. In RRMS, MTR-values adjacent to the ventricle and in PV-lesions correlated positively with CMT and negatively with EDSS. CONCLUSION: PV-MTR gradients are present from the earliest stage of MS, consistent with more pronounced microstructural WM-damage closer to the ventricles. The positive association between reduced CMT and lower MTR in PV-NAWM suggests a common pathophysiologic mechanism. Together, these findings indicate the potential use of multimodal MRI as refined marker for MS-related tissue changes

    Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy.

    Get PDF
    BACKGROUND: Thalamic atrophy is proposed to be a major predictor of disability progression in multiple sclerosis (MS), while thalamic function remains understudied. OBJECTIVES: To study how thalamic functional connectivity (FC) is related to disability and thalamic or cortical network atrophy in two large MS cohorts. METHODS: Structural and resting-state functional magnetic resonance imaging (fMRI) was obtained in 673 subjects from Amsterdam (MS: N = 332, healthy controls (HC): N = 96) and Graz (MS: N = 180, HC: N = 65) with comparable protocols, including disability measurements in MS (Expanded Disability Status Scale, EDSS). Atrophy was measured for the thalamus and seven well-recognized resting-state networks. Static and dynamic thalamic FC with these networks was correlated with disability. Significant correlates were included in a backward multivariate regression model. RESULTS: Disability was most strongly related (adjusted R2 = 0.57, p < 0.001) to higher age, a progressive phenotype, thalamic atrophy and increased static thalamic FC with the sensorimotor network (SMN). Static thalamus-SMN FC was significantly higher in patients with high disability (EDSS ⩾ 4) and related to network atrophy but not thalamic atrophy or lesion volumes. CONCLUSION: The severity of disability in MS was related to increased static thalamic FC with the SMN. Thalamic FC changes were only related to cortical network atrophy, but not to thalamic atrophy

    Psychological factors and brain magnetic resonance imaging metrics associated with fatigue in persons with multiple sclerosis.

    Get PDF
    BACKGROUND Besides demographics and clinical factors, psychological variables and brain-tissue changes have been associated with fatigue in persons with multiple sclerosis (pwMS). Identifying predictors of fatigue could help to improve therapeutic approaches for pwMS. Therefore, we investigated predictors of fatigue using a multifactorial approach. METHODS 136 pwMS and 49 normal controls (NC) underwent clinical, neuropsychological, and magnetic resonance imaging examinations. We assessed fatigue using the "Fatigue Scale for Motor and Cognitive Functions", yielding a total, motor, and cognitive fatigue score. We further analyzed global and subcortical brain volumes, white matter lesions and microstructural changes (examining fractional anisotropy; FA) along the cortico striatal thalamo cortical (CSTC) loop. Potential demographic, clinical, psychological, and magnetic resonance imaging predictors of total, motor, and cognitive fatigue were explored using multifactorial linear regression models. RESULTS 53% of pwMS and 20% of NC demonstrated fatigue. Besides demographics and clinical data, total fatigue in pwMS was predicted by higher levels of depression and reduced microstructural tissue integrity in the CSTC loop (adjusted R2 = 0.52, p < 0.001). More specifically, motor fatigue was predicted by lower education, female sex, higher physical disability, higher levels of depression, and self-efficacy (adjusted R2 = 0.54, p < 0.001). Cognitive fatigue was also predicted by higher levels of depression and lower self-efficacy, but in addition by FA reductions in the CSTC loop (adjusted R2 = 0.45, p < 0.001). CONCLUSIONS Our results indicate that depression and self-efficacy strongly predict fatigue in MS. Incremental variance in total and cognitive fatigue was explained by microstructural changes along the CSTC loop, beyond demographics, clinical, and psychological variables

    Longitudinal assessment of multiple sclerosis with the brain-age paradigm

    Get PDF
    OBJECTIVE: During the natural course of MS, the brain is exposed to ageing as well as disease effects. Brain ageing can be modelled statistically; the so-called 'brain-age' paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression and future outcomes. METHODS: In a longitudinal, multi-centre sample of 3,565 MRI scans, in 1,204 MS and clinically-isolated syndrome (CIS) patients and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured 'brain-predicted age' using T1-weighted MRI. We compared brain-PAD between MS and CIS patients and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored. RESULTS: MS patients had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years [95% CI 8.5, 12.1] versus 4.3 years [-2.1, 6.4], p < 0.001). The highest brain-PADs were in secondary-progressive MS (+19.4 years [17.1, 21.9]). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02 [1.01, 1.03], p < 0.001); though normalised brain volume was a stronger predictor. Greater annualised brain-PAD increases were associated with greater annualised EDSS score (r = 0.26, p < 0.001). INTERPRETATION: The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, 'brain-age' could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrolment. This article is protected by copyright. All rights reserved

    Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium

    Get PDF
    Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    Age-Related Changes of Peak Width Skeletonized Mean Diffusivity (PSMD) Across the Adult Lifespan: A Multi-Cohort Study

    Get PDF
    Parameters of water diffusion in white matter derived from diffusion-weighted imaging (DWI), such as fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AD, and RD), and more recently, peak width of skeletonized mean diffusivity (PSMD), have been proposed as potential markers of normal and pathological brain ageing. However, their relative evolution over the entire adult lifespan in healthy individuals remains partly unknown during early and late adulthood, and particularly for the PSMD index. Here, we gathered and analyzed cross-sectional diffusion tensor imaging (DTI) data from 10 population-based cohort studies in order to establish the time course of white matter water diffusion phenotypes from post-adolescence to late adulthood. DTI data were obtained from a total of 20,005 individuals aged 18.1 to 92.6 years and analyzed with the same pipeline for computing skeletonized DTI metrics from DTI maps. For each individual, MD, AD, RD, and FA mean values were computed over their FA volume skeleton, PSMD being calculated as the 90% peak width of the MD values distribution across the FA skeleton. Mean values of each DTI metric were found to strongly vary across cohorts, most likely due to major differences in DWI acquisition protocols as well as pre-processing and DTI model fitting. However, age effects on each DTI metric were found to be highly consistent across cohorts. RD, MD, and AD variations with age exhibited the same U-shape pattern, first slowly decreasing during post-adolescence until the age of 30, 40, and 50 years, respectively, then progressively increasing until late life. FA showed a reverse profile, initially increasing then continuously decreasing, slowly until the 70s, then sharply declining thereafter. By contrast, PSMD constantly increased, first slowly until the 60s, then more sharply. These results demonstrate that, in the general population, age affects PSMD in a manner different from that of other DTI metrics. The constant increase in PSMD throughout the entire adult life, including during post-adolescence, indicates that PSMD could be an early marker of the ageing process

    Deep gray matter volume loss drives disability worsening in multiple sclerosis

    Get PDF
    Objective: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. Methods: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. Results: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (–1.45%), PPMS (–1.66%), and RRMS (–1.34%) than CIS (–0.88%) and HCs (–0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (–1.21%) was significantly faster than RRMS (–0.76%), CIS (–0.75%), and HCs (–0.51%). Similarly, the rate of parietal GM atrophy in SPMS (–1.24-%) was faster than CIS (–0.63%) and HCs (–0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). Interpretation: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210–222

    Deep gray matter volume loss drives disability worsening in multiple sclerosis.

    Get PDF
    OBJECTIVE: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. METHODS: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. RESULTS: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). INTERPRETATION: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210-222
    • …
    corecore