861 research outputs found

    The fate of microplastics during the anaerobic digestion of thermally pretreated sludge

    Get PDF
    The presence of microplastics (MPs) in the water environment has raised as an issue of great concern, mainly due to their persistence and potential adverse effects on biota. Municipal wastewater treatment plants have been claimed among the most important point source of MPs. Nevertheless, they act as a barrier for the spread of MPs in water, since a significant amount of these pollutants concentrates in the sludge originating from wastewater treatment. This study focuses on the presence of MPs in sewage sludge, with the main aim of assessing their fate during the mesophilic anaerobic digestion of thermally pretreated sludge. MP abundance in the digestate as well as the anaerobic biodegradability of the pretreated substrates were assessed. Experimental results addressed preliminary considerations on the effects of high temperature on the MPs as well as on their influence on anaerobic degradation processes

    The PRISMA Hand II: A Sensorized Robust Hand for Adaptive Grasp and In-Hand Manipulation

    Get PDF
    Although substantial progresses have been made in building anthropomorphic robotic hands, lack of mechanical robustness, dexterity and force sensation still restrains wide adoption of robotic prostheses. This paper presents the design and preliminary evaluation of the PRISMA hand II, which is a mechanically robust anthropomorphic hand developed at the PRISMA Lab of University of Naples Federico II. The hand is highly underactuated, as the 19 finger joints are driven by three motors via elastic tendons. Nevertheless, the hand can performs not only adaptive grasps but also in-hand manipulation. The hand uses rolling contact joints, which is compliant in multiple directions. Force sensor are integrated to each fingertip in order to provide force feedback during grasping and manipulation. Preliminary experiments have been performed to evaluate the hand. Results show that the hand can perform various grasps and in-hand manipulation, while the structure can withstand severe disarticulation. This suggests that the proposed design can be a viable solution for robust and dexterous prosthetic hands

    Continuum and discrete approach in modeling biofilm development and structure: a review

    Get PDF
    The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions

    Calibration of tactile/force sensors for grasping with the PRISMA Hand II

    Get PDF
    The PRISMA Hand II is a mechanically robust anthropomorphic hand developed at PRISMA Lab, University of Naples Federico II. The hand is highly underactuated, three motors drive 19 joints via elastic tendons. Thanks to its particular mechanical design, the hand can perform not only adaptive grasps but also in-hand manipulation. Each fingertip integrates a tactile/force sensor, based on optoelectronic technology, to provide tactile/force feedback during grasping and manipulation, particularly useful with deformable objects. The paper briefly describes the mechanical design and sensor technology of the hand and proposes a calibration procedure for tactile/force sensors. A comparison between different models of Neural Networks architectures, suitable for sensors calibration, is shown. Experimental tests are provided to choose the optimal tactile sensing suite. Finally, experiments for the regulation of the forces are made to show the effectiveness of calibrated sensors

    S100B is not a reliable prognostic index in paediatric TBI.

    Get PDF
    Pediatr Neurosurg. 2007;43(4):258-64

    Dewatering of excess sludge produced by cas and mbr aerobic treatment plants. effects of biochemical stability and eps composition

    Get PDF
    This paper investigates the behavior of different sludges from several treatment plants at full and pilot scale configured as Conventional Activated Sludge (CAS) and Membrane Bio Reactor (MBR) plants treating different kinds of wastewaters. The sludges collected were subjected to complete analytical and technological characterization in order to correlate the rheological properties that affect the dewatering behavior to the sludge chemical physical properties. In detail the EPS from the samples collected is extracted and characterized in terms of carbohydrates, proteins, uronic acids and humic acids content. Moreover, once characterized, the sludges were subjected to AD in order to assess their bio-methanation potential and hence their biological stability. The final aim was to find correlations between the WWTP operational parameters (i.e. HRT, SRT, volumetric load coefficient, aeration) that finally affect its chemical composition (i.e. BMP, EPS composition) and the physical behavior of the sludge
    corecore