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Calibration of tactile/force sensors for grasping with
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Abstract—The PRISMA Hand II is a mechanically robust
anthropomorphic hand developed at PRISMA Lab, University
of Naples Federico II. The hand is highly underactuated, three
motors drive 19 joints via elastic tendons. Thanks to its particular
mechanical design, the hand can perform not only adaptive
grasps but also in-hand manipulation. Each fingertip integrates
a tactile/force sensor, based on optoelectronic technology, to
provide tactile/force feedback during grasping and manipulation,
particularly useful with deformable objects. The paper briefly
describes the mechanical design and sensor technology of the
hand and proposes a calibration procedure for tactile/force
sensors. A comparison between different models of Neural
Networks architectures, suitable for sensors calibration, is shown.
Experimental tests are provided to choose the optimal tactile
sensing suite. Finally, experiments for the regulation of the forces
are made to show the effectiveness of calibrated sensors.

Index Terms—robotic hand, force/tactile sensors, neural net-
works models, force regulation.

I. INTRODUCTION

Substantial progress has been made in building anthro-
pomorphic hands in the past two decades, using emerging
technologies, both for robotic and prosthetic applications.
Currently, there are several anthropomorphic hands available
in the market, for example, the Bebionic Hand (Ottobock
GmbH.), the i-Limb Hand (Touch Bionics Ltd.) and the Brunel
Hand (Openbionics Ltd.).

Inspired by the human hand, compliance and sensors have
been introduced to robotic hands, using different technological
solutions, to improve robustness by absorbing external impact
and capabilities in object grasping and manipulation. Elastic
actuation has been introduced, by means of series elastic
tendons [1], compliant links made from steel layers [2],
and elastic joints, including flexure-based [3]-[5] and spring-
based [6]. The PISA/IIT SoftHand [7] and the SoftHand Pro-
H [8], using COmpliant Rolling-contact Elements (CORE)
joint, are particularly interesting for our design. The DEX-
MART hand [9] is a good example of anthropomorphic
solution with an advanced sensing system, evaluated for the
development of PRISMA Hand II.
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While the grasping capability of robotic hands is steadily
improving and approaching human performance [10]-[12], the
remaining gaps with the human hand are related to dexterity,
particularly in-hand manipulation dexterity, mostly in presence
of deformable objects. The capability of in-hand manipulation
brings better accuracy and efficiency to the upper-limb, as
observed from the human [13], [14]. Recently developed fully-
actuated hand, for example, the Shadow Dexterous Hand, the
KITECH hand [15] and the BCL-13 [16], have demonstrated
some level of in-hand manipulation dexterity, benefiting from
independently driven finger joints. However, a fully-actuated
hand is challenging in design, in particular, the major diffi-
culty is to integrate a large number of actuators. It is also
challenging in control for prosthetic applications, given the
limited bandwidth of bio-signal interfaces that can be utilized
for control.

For these reasons, researchers are moving their interests into
designing underactuated hands, where the degrees of actuation
(DoAs) is used to drive higher degrees of freedom (DOFs).
Recently, a framework of performing efficient grasp [4], [7],
[17]-[19] and in-hand manipulation by utilizing the elasticity
of underactuated fingers, extended the functionality of un-
deractuated hands [20]. Several robotic hands with in-hand
manipulation capabilities have been introduced, e.g. iRobot-
Harvard-Yale (iHY) hand [5], the GR2 gripper [21], [22], the
caging manipulation gripper [23] and the Pisa/IIT SoftHand
2 [24]. Regarding tactile/force sensors, the main goal is to
find low-cost technology that can be integrated in small
spaces in order to improve the manipulation capabilities of
the robotic hand. Very few commercial devices are currently
available, even though many technologies have been proposed
in the scientific literature to build tactile sensors like resistive,
piezoelectric, capacitive, magnetic and optoelectronic [25].
The tactile/force sensor presented in this paper uses the
technology proposed in [26], where the working principle has
been presented for the first time and it exploits the studies
based on Finite Element (FE) modeling conducted in [27].
In [26] for the first time also a neural network has been
trained to evaluate the possibility to reconstruct force compo-
nents from the tactile map. However, no comparison among
different machine learning approaches, neither evaluations of
the estimation quality were done.

In this paper, after a brief description of the PRISMA
hand II and of the tactile sensors integrated into, a calibration
solution for all tactile sensors available on the robotic hand is
proposed. The solution compares different neural networks in
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Fig. 1. The PRISMA Hand II

order to evaluate their effectiveness also trough experimental
validation.

II. BRIEF DESCRIPTION OF THE MECHANICAL DESIGN

The PRISMA hand II (Fig. 1), presented for the first time
in [28], has 19 joints and three motors (see Fig. 2(a)). Each
finger is shown in Fig. 2(b) and has three flexion/extension
joints consisting of compliant rolling joints. The thumb has
one rotation joint, while the other fingers have one abduc-
tion/adduction joint, all consisting of revolute joints. The
finger flexion joints adopt the rolling contact joint [29], which
consists of a pair of surfaces in rolling contact with each
other, with elastic elements holding them together. Each joint
consists of a base link, a distal link, two ligaments, and a
tendon. The ligaments, made of elastic string, are attached to
the base link and the distal link. The tendon, which is made
of the same elastic string, is anchored to the distal link and
threaded through the hole of the base link. By pulling the
tendon, the distal link is actuated and rolled on the cylindrical
surface of the base link. Once the driving tendon is released,
the elastic ligaments return the distal link to the extended po-
sition, similar to a torsional spring in a conventional pin joint.
The elastic tendon and ligaments determine the joint multi-
directional compliance, by allowing various disarticulation,
including backward bend, sideway bend, twist, and dislocation.
The video ! shows additional features of the hand.

Thttps://www.youtube.com/watch?v=Rxg6iGle_60
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Fig. 2. Actuation strategy of PRISMA Hand II (a) and finger design (b).

III. THE TACTILE/FORCE SENSOR TECHNOLOGY

The proposed tactile/force sensor has been suitably designed
to be integrated into the PRISMA Hand II fingertip. Its
dimensions are reported in Fig. 3(a). The design is based on
the use of LED-phototransistor couples (corresponding to the
sensible points), organized as a matrix on a Printed Circuit
Board (PCB), and exploited to measure the deformation of an
elastic layer positioned above the optoelectronic devices, as
shown in Fig. 3(b). The obtained tactile map, after a calibration
procedure, can be used to estimate the force applied to the
deformable layer.

The PCB is constituted by four photoreflectors (code
NJL5908AR, manufactured by New Japan Radio) organized as
a 2 X 2 matrix, with a spatial resolution equal to 3.4 mm. Each
photoreflector integrates, in the same package, an infrared
Light Emitting Diode (LED) with a peak wavelength @ 920 nm
and a Photo-Transistor (PT) with a peak wavelength @ 880 nm.
The LED of each couple illuminates the reflective bottom
surface of the deformable layer, while the phototransistor
receives the reflected light and transduces it into a current.
The deformable pad (see Fig. 3(c)) was cast by using silicone
molding technology, and it is composed of a top layer of
black silicone to avoid cross-talk problems between taxels
and environment light disturbances and a bottom layer of
white silicone to increase the sensor sensitivity, ensuring the
maximum light reflection. The whole pad has been realized
by using the MM928 silicone, manufactured by ACC Sili-
cones, with a hardness equal to 26 Shore-A. This hardness
is sufficiently low to allow the manipulation of deformable
and fragile objects with a good sensitivity as shown in the
following sections.

When an external force is applied, the deformable layer
produces some local variations in the bottom surface of
elastic material which induces a variation of the reflected
light intensity and, consequently, a variation of the current
flowing into the phototransistor. The relation between the
emitted and the received light, with respect to the distance
of the reflecting surface, is non-monotonic according to the
datasheet of the photoreflectors. As the distance reduces, the
received light goes up, by reaching the maximum value at
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Fig. 3. PRISMA hand II fingertip assembly: fingertip dimensions (a),
assembly of a tactile/force sensor (b) and silicone pad features (c).

0.25 mm distance of the reflecting surface. Then, if the dis-
tance further decreases, the received light drops. To avoid the
non-monotonicity, a suitably designed rigid grid is introduced
between the PCB and the silicone pad. The rigid grid has been
printed with black plastic to reduce cross-talk among sensing
points. Also the design of the curvature for the deformable
pad has been defined in order to have a local curvature with a
radius sufficiently small, to consider the contact surface with
everyday objects always approximated as a contact with a flat
surface.

Moreover, the maximum force level can be adapted by
changing the hardness of the deformable layer. With the
selected material the reachable force levels are equal to some
newtons as presented in the calibration section, similarly to the
human touch. The maximum measurable force is also limited
by the maximum vertical deformation that each reflecting
surface can reach. Also this last parameter can be optimized
on the basis of final application.

IV. SENSOR CALIBRATION

Each tactile sensor, integrated into PRISMA hand II finger-
tips, present as output four voltages obtained by transducing
the currents flowing into PTs in voltages, acquired through
Analog-to-Digital converters available from microcontroller
integrated at the base of the hand. The sensor calibration
consists to identify the parameters of a model (in this paper
a Neural Network) which represents the relationship between
the external applied force components and the raw voltage
signals available from the sensor. To this aim, voltages and
force components have to be simultaneously acquired in order
to prepare an adequate dataset for the calibration.

Data are collected using the suitably prepared setup (see
Fig. 4), comprising of the developed fingertip sensor which
is installed on a reference force sensor (ATI NANO 17 F/T
Sensor) by an adapter. Then the silicone pad is pushed from
various directions, using a rigid object with a flat surface. The
force measurements of the reference sensor and the voltage

PRISMA
sensor

Reference

Sensor
—

Fig. 4. Calibration setup.

signals of the tactile sensors are both recorded, at a sampling
rate equal to 180 Hz. For each fingertip the measurements have
been recorded for about 180s, by obtaining a total of about
30,000 data samples. The acquired data have been randomly
divided into training, validation, and test subsets comprising
70%, 15%, and 15%, respectively.

Sanchez et al. [30] have used recurrent units for force
estimation since their data is time-correlated. On the contrary,
our data is not time-correlated. The voltage-force relationship
can be treated as a time-independent feature; hence it can
be represented as a mapping from voltage readings to force
components for each data point. Several linear and nonlinear
machine learning regression models are trained to draw the
baseline. Then dense networks are trained, and the optimal
one, five layers with batch normalization (4 — 16 —8 —8 — 3
neurons in layers), is selected. ReLu activations and Adam op-
timizer is used for training both CNN and dense networks. All
the trained models have been compared by means of the Mean
Absolute Error (MAE) and the Mean Squared Error (MSE)
metrics. Figure 5 reports MAE and MSE computed for all
trained models for the three force components reconstruction
corresponding to the index finger of PRISMA hand II (the
list of tested models can be evaluated from the same figure).
The results obtained for other fingers are very similar. From
Fig. 5 results that the best fitting can be obtained by using
a fully connected neural network (FCN) and a convolutional
neural network (CNN). Reshaping the vector of PT signals
to construct an image allows to use a CNN, and also to take
advantage of the translational invariant feature of convolutional
networks. The CNN regresses the phototransistor outputs (an
image composed of 2 x 2 pixels) to the three force components
(fz, fy, f>). Although the integrated sensor only have 4 PTs
and hence a small image. The impact of using a CNN will be
more obvious by increasing the number of PTs and the number
of pixels. The network architecture is represented in Figure 6.
Its training makes use of 3 x 3 filters with the same padding,
batch normalization and dropout layers, Rectified Linear as
activation function (ReLu) and Adam as optimizer. The total
parameters of the network are 1675. Since both electronic
components (LED-PT couples) and mechanical components
(deformable layers) are custom, the characteristics of each
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Fig. 5. Mean Absolute Error and Mean Squared Error for different models
and all force components of index finger.
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Fig. 6. Developed CNN architecture used for mapping phototransistor outputs
to forces in three dimensions

sensor are different for each finger, and as a consequence to
obtain good results five different networks have to be trained
for the five fingers. Figures 7 and 8 report the reconstruction
obtained by two different networks trained for the index and
the ring fingers, respectively.

V. EXPERIMENTS ON PRISMA HAND II

In order to evaluate the effectiveness of the proposed
sensing solution, some experiments with the calibrated sensors
assembled on-board the PRISMA hand II have been carried
out.

A. On board force estimation

The index finger of the PRISMA hand II has been used to
push on the ATT NANO 17 F/T Sensor (used as ground truth
for the calibration), mounted on a workbench (see Fig. 9).
The objective is to compare the force reconstructed by the
calibrated sensor, assembled on board the hand, and the force
components measured by the ATI. For these on board tests
the two best neural networks (FCN and CNN according to
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Fig. 7. Predicted and measured forces by CNN for index finger (training
data).
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Fig. 8. Predicted and measured forces by CNN for ring finger (training data).

error values reported in Fig. 5) have been compared with the
ground truth. The index finger has been pushed on the ATI
sensor along the three orthogonal axes as shown in pictures
reported in Fig. 9. A suitable sign compensation has been
used to take into account the relative position of ATI and
fingertip frames and to allow the comparison of estimated
force components and the ground truth. The results in Fig. 10
show that also on board, the FCN and the CNN models present
good results and similar among them. However, the CNN
model is for all three components slightly better than FCN as
already highlighted in the calibration phase. For both models
it is evident that the normal components is reconstructed much
better than tangential components. This characteristic mainly
depends on deformable pad shape which well tranduces the
normal external component into local deformations measured
by the taxels, while the tangential components have a lower
effect on taxel measurements. To increase the accuracy of the
sensor, in future developments, a higher number of cells (LED-
PT couples) have to be integrated on the PCB.
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Fig. 9. On board validation of force components: reference frames of ATI and
fingertip sensor (a), test along x direction (b), y direction (c) and z direction
(d).
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Fig. 10. Validation of estimated forces with on board assembled sensors
(testing data).

B. Force adjustment

Using the CNN model for the calibration of the fingertip
sensor, a force adjustment experiment has been carried out.
The objective is to grasp with the PRISMA hand II a ball, by
ensuring that the following no-slip condition is respected on
thumb fingertip:

1Fw]] < s |2 ey

where || F¢|| is the norm of tangential force (combination of
fz and f,), us is the static friction coefficient and |f,| is the

Reaction

Disturb

Thumb

Time(s)

Fig. 11. Force adjustment for slipping avoidance: || F'¢|| blu line and ps | f=|
red line.

absolute value of normal force. In the proposed experiment,
a value for us = 0.5 has been considered for the static
friction coefficient and a tennis ball with a mass equal to
m = 0.056 Kg for the grasping. The experiment consists in
increase the grasp strength by acting on the finger motors
proportionally, through a gain k, to the norm of tangential
force estimated by the thumb, when the no-slip condition is
not verified. Figure 11 reports a sequence of images and the
corresponding forces estimated by the thumb for three different
phases of the same experiment: at initial the tennis ball is
grasped by the hand and the estimated ||F|| is well below
s | 2| (this means that the system is away from slipping); then
an operator impose a disturbance, trying to remove the ball
from the hand, which corresponds to an increase of tangential
force || F;|| with an increase of grasp strength according to the
controller gain (in this phase, between the cyan vertical lines,
the motor increase their action to avoid the slippage); finally,
when the disturbance finishes the no-slip condition is restored
and the control action, based on tangential force, ends.

VI. CONCLUSIONS

This paper presents a novel tactile sensing suite for the
PRISMA Hand II. A brief description of the PRISMA Hand
mechanical design, the tactile/force sensor technology and the
data recording procedure is provided. Afterwards, a calibration
technique is proposed by comparing several neural networks.
In particular, some tests on datasets demonstrates that FCN and
CNN are the best models to use with the proposed sensing
solution. The selected models have been tested on board
by exploiting the PRISMA hand II in different experiments,
consisting in pushing on a reference sensor and slipping
avoidance for a grasped tennis ball. Future works are needed in
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order to design tactile sensors with a higher number of taxels,
since the accuracy in force reconstruction is limited for the
implementation of advanced manipulation tasks.
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