3,368 research outputs found

    E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury

    Get PDF
    Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented

    Variación intraespecífica en resistencia a la sequía de Nothofagus antarctica (G. Forst.) Oerst. (Nothofagaceae)

    Get PDF
    Futuros escenarios climáticos limitarían el establecimiento de plántulas en bosques de los Andes del sur debido al estrés hídrico. Comparamos la resistencia a la sequía de plántulas de Nothofagus antarctica de dos límites arbóreos: Termas de Chillán (clima mediterráneo) y Antillanca (clima superhúmedo). También comparamos la resistencia a la sequía de plántulas de dos altitudes diferentes de Antillanca. No encontramos diferencias en resistencia a la sequía entre plántulas de los dos límites arbóreos. Las plántulas del límite arbóreo de Antillanca resultaron más resistentes que las de una menor elevación.Futuros escenarios climáticos limitarían el establecimiento de plántulas en bosques de los Andes del sur debido al estrés hídrico. Comparamos la resistencia a la sequía de plántulas de Nothofagus antarctica de dos límites arbóreos: Termas de Chillán (clima mediterráneo) y Antillanca (clima superhúmedo). También comparamos la resistencia a la sequía de plántulas de dos altitudes diferentes de Antillanca. No encontramos diferencias en resistencia a la sequía entre plántulas de los dos límites arbóreos. Las plántulas del límite arbóreo de Antillanca resultaron más resistentes que las de una menor elevación

    An investigation of the effectiveness of interdiction regimes against terrorist attacks in an urban transport hub

    Get PDF
    This paper examines the effect of varying attack and interdiction strategies, both alone and in combination, in an urban transport hub. Particular attention is paid to the potential disruption to normal commuter services resulting from an intrusive stop and search regime. The work presented here represents a qualitative investigation in that many parameters relating to the details of the interdiction mechanisms are first-order approximations. However, the background against which the investigation is conducted has been constructed to be as realistic as possible. The simulation is performed using our generalised microsimulation framework Simulacron , along with a reper- toire of simulation modules. Changes and additions to these modules required for the present study are de- scribed. The station is modelled using 454 distinct locations, most of which are interconnected to form a directed graph to permit commuter movement. An average of some 8,300 commuters move through the station, outbound and inbound. Figure 1 is a frame from the baseline simulation of the station, generated by a custom post-processing tool and rendered by LightWave, showing commuters and trains. The train schedule is constructed from the real schedule for the 3 rd of June, 2013. It is from this that the commuter population is derived. Five attack strategies (including no attack) are matrixed against four interdiction strategies (including no pro- tection) to produce 20 scenarios. Some key results are presented, along with brief remarks on the remainder. An additional 30 variant scenarios were used to examine a stop and search interdiction strategy. For these scenarios, impact on commuters was inferred from the number of outbound commuters missing their intended train, how long commuters spent waiting in checkpoint queues, and the size of these queues, on average and at peak. Congestion at the search point was also used as an indication of the increased vulnerability resulting from stop and search. Our conclusions from this work are that overt, intrusive protection schemes appear to be more efficacious than passive or covert means. However, the former present their own problems in both disruption to commuter activities and the creation of new potential targets. In the case of stop and search, this takes the form of unacceptable commuter delays and congestion at the checkpoints. As a result of this, the overall interdiction regime must be adjusted to protect the new target. Doing so without introducing additional targets may prove challenging. It seems that the best likely outcome is to redirect the terrorist attack to a softer target

    Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients

    Get PDF
    Background and Aims The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Methods Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Key Results Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood. Conclusions Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecoton

    Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1–x alloys

    Get PDF
    The nitrogen bonding configurations in GaNxAs1–x alloys grown by molecular beam epitaxy with 0.07=0.03, the nitrogen is found to exist in a single bonding configuration – the Ga–N bond; no interstitial nitrogen complexes are present. The amount of nitrogen in the alloys is estimated from the XPS using the N 1s photoelectron and Ga LMM Auger lines and is found to be in agreement with the composition determined by x-ray diffraction

    Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location

    Get PDF
    Since growth is more sensitive to drought than photosynthesis, trees inhabiting dry regions are expected to exhibit higher carbohydrate storage and less growth than their conspecifics from more humid regions. However, the same pattern can be the result of different genotypes inhabiting contrasting humidity conditions. To test if reduced growth and high carbohydrate storage are environmentally driven by drought, we examined the growth and non-structural carbohydrate (NSC) concentrations in single-provenance stands of mature trees of Pinus contorta Douglas and Pinus ponderosa Douglas ex C. Lawson planted at contrasting humidity conditions (900 versus 300 mm of annual precipitation) in Patagonia, Chile. Individual tree growth was measured for each species and at each location as mean basal area increment of the last 10 years (BAI10), annual shoot elongation for the period 2011-14, and needle length for 2013 and 2014 cohorts. Additionally, needle, branch, stem sapwood and roots were collected from each sampled tree to determine soluble sugars, starch and total NSC concentrations. The two species showed lower mean BAI10 and 2013 needle length in the dry site; P. ponderosa also had lower annual shoot extension for 2011 and 2014, and lower 2014 needle length, in the dry than in the mesic site. By contrast, NSC concentrations of all woody tissues for both species were either similar or higher in the dry site when compared with the mesic site. Patterns of starch and sugars were substantially different: starch concentrations were similar between sites except for roots of P. ponderosa, which were higher in the dry site, while sugar concentrations of all woody tissues in both species were higher in the dry site. Overall, our study provides evidence that reduced growth along with carbon (C) accumulation is an environmentally driven response to drought. Furthermore, the significant accumulation of low-molecular weight sugars in the dry site is compatible with a prioritized C allocation for osmoregulation. However, since this accumulation did not come at the expense of reduced starch, it is unlikely that growth was limited by C supply in the dry site

    Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Get PDF
    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.Comment: 4 pages, 4 figures, to be published in J. Phys. Conf. Ser. for QD201

    Federating distributed clinical data for the prediction of adverse hypotensive events

    Get PDF
    The ability to predict adverse hypotensive events, where a patient's arterial blood pressure drops to abnormally low (and dangerous) levels, would be of major benefit to the fields of primary and secondary health care, and especially to the traumatic brain injury domain. A wealth of data exist in health care systems providing information on the major health indicators of patients in hospitals (blood pressure, temperature, heart rate, etc.). It is believed that if enough of these data could be drawn together and analysed in a systematic way, then a system could be built that will trigger an alarm predicting the onset of a hypotensive event over a useful time scale, e.g. half an hour in advance. In such circumstances, avoidance measures can be taken to prevent such events arising. This is the basis for the Avert-IT project (http://www.avert-it.org), a collaborative EU-funded project involving the construction of a hypotension alarm system exploiting Bayesian neural networks using techniques of data federation to bring together the relevant information for study and system development
    corecore