562 research outputs found

    Classical versus quantum intensity-field correlations of scattered light from extended cold atomic clouds

    Full text link
    We calculate the intensity-field correlations in the light scattered by N cold atoms driven by a quasi-resonant laser field. Fundamental differences occur if the atomic state is an entangled single-excitation state or a coherent factorized state. We provide analytic expressions for the two-time field and intensity correlation functions for the timed Dicke state and the quasi-Bloch state. The comparison with multi-atom simulations shows good agreement between numerical and analytic solutions.Comment: 15 pages, 5 figure

    A quantum model for collective recoil lasing

    Get PDF
    Free Electron Laser (FEL) and Collective Atomic Recoil Laser (CARL) are described by the same model of classical equations for properly defined scaled variables. These equations are extended to the quantum domain describing the particle's motion by a Schr\"{o}dinger equation coupled to a self-consistent radiation field. The model depends on a single collective parameter ρˉ\bar \rho which represents the maximum number of photons emitted per particle. We demonstrate that the classical model is recovered in the limit ρˉ≫1\bar \rho\gg 1, in which the Wigner function associated to the Schr\"{o}dinger equation obeys to the classical Vlasov equation. On the contrary, for ρˉ≀1\bar \rho\le 1, a new quantum regime is obtained in which both FELs and CARLs behave as a two-state system coupled to the self-consistent radiation field and described by Maxwell-Bloch equations

    Cooperativity in light scattering by cold atoms

    Full text link
    A cloud of cold N two-level atoms driven by a resonant laser beam shows cooperative effects both in the scattered radiation field and in the radiation pressure force acting on the cloud center-of-mass. The induced dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a quantum description of the process in terms of a master equation for the atomic density matrix in the scalar, Born-Markov approximations, reduced to the single-excitation limit. From a perturbative approach for weak incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on the center of mass. We also derive an expression for collective suppression of the atomic excitation and the scattered light by these correlated dipoles.Comment: 15 pages, 8 figure

    The Semiclassical and Quantum Regimes of Superradiant Light Scattering from a Bose-Einstein Condensate

    Get PDF
    We show that many features of the recent experiments of Schneble et al. [D. Schneble, Y. Torii, M. Boyd, E.W. Streed, D.E. Pritchard and W. Ketterle, Science vol. 300, p. 475 (2003)], which demonstrate two different regimes of light scattering by a Bose-Einstein condensate, can be described using a one-dimensional mean-field quantum CARL model, where optical amplification occurs simultaneously with the production of a periodic density modulation in the atomic medium. The two regimes of light scattering observed in these experiments, originally described as ``Kapiza-Dirac scattering'' and ``Superradiant Rayleigh scattering'', can be interpreted as the semiclassical and quantum limits respectively of CARL lasing.Comment: 10 pages, 5 figures - to appear in Journal of Optics

    Mean-Field Description of Cooperative Scattering by Atomic Clouds

    Full text link
    We present analytic expressions for the scattering of light by an extended atomic cloud. We obtain the solution for the mean-field excitation of different atomic spherical distributions driven by an uniform laser, including the initial build-up, the steady-state and the decay after the laser is switched off. We show that the mean-field model does not describe subradiant scattering, due to negative interference of the photons scattered by NN discrete atoms.Comment: 14 pages, 9 figure

    Microscopic theory of photonic band gaps in optical lattices

    Get PDF
    We propose a microscopic model to describe the scattering of light by atoms in optical lattices. The model is shown to efficiently capture Bragg scattering, spontaneous emission and photonic band gaps. A connection to the transfer matrix formalism is established in the limit of a one-dimensional optical lattice, and we find the two theories to yield results in good agreement. The advantage of the microscopic model is, however, that it suits better for studies of finite-size and disorder effects.Comment: 5 pages, 6 figure

    Quantum theory of SASE FEL

    Get PDF
    We describe a free-electron laser (FEL) in the Self-Amplified Spontaneous Emission (SASE) regime quantizing the electron motion and taking into account propagation effects. We demonstrate quantum purification of the SASE spectrum, i.e. in a properly defined quantum regime the spiking behavior disappears and the SASE power spectrum becomes very narrow

    Radiation to atom quantum mapping by collective recoil in Bose-Einstein condensate

    Get PDF
    We propose an experiment to realize radiation to atom continuous variable quantum mapping, i.e. to teleport the quantum state of a single mode radiation field onto the collective state of atoms with a given momentum out of a Bose-Einstein condensate. The atoms-radiation entanglement needed for the teleportation protocol is established through the interaction of a single mode with the condensate in presence of a strong far off-resonant pump laser, whereas the coherent atomic displacement is obtained by the same interaction with the radiation in a classical coherent field. In principle, verification of the protocol requires a joint measurement on the recoiling atoms and the condensate, however, a partial verification involving populations, i.e. diagonal matrix elements may be obtained through counting atoms experiments

    Atomic interaction effects in the superradiant light scattering from a Bose-Einstein condensate

    Get PDF
    We investigate the effects of the atomic interaction in the Superradiant Rayleigh scattering from a Bose-Einstein condensate driven by a far-detuned laser beam. We show that for a homogeneous atomic sample the atomic interaction has only a dispersive effect, whereas in the inhomogeneous case it may increase the decay of the matter-wave grating.Comment: 12 pages, 4 figures, presented to the XII International Laser Physics Workshop, August 24-29, Hamburg, to be published in Laser Physic
    • 

    corecore