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PACS. 42.50.Fx – Cooperative phenomena in quantum optical systems.
PACS. 41.60.Cr – Free-electron lasers.
PACS. 42.50.Vk – Mechanical effects of light on atoms, molecules, electrons, and ions.

Abstract. – Free Electron Laser (FEL) and Collective Atomic Recoil Laser (CARL) are
described by the same model of classical equations for properly defined scaled variables. These
equations are extended to the quantum domain describing the particle’s motion by a Schrödinger
equation coupled to a self-consistent radiation field. The model depends on a single collective
parameter ρ̄ which represents the maximum number of photons emitted per particle. We
demonstrate that the classical model is recovered in the limit ρ̄ � 1, in which the Wigner
function associated to the Schrödinger equation obeys to the classical Vlasov equation. On
the contrary, for ρ̄ ≤ 1, a new quantum regime is obtained in which both FELs and CARLs
behave as a two-state system coupled to the self-consistent radiation field and described by
Maxwell-Bloch equations.

Introduction. – Apparently very different systems as High-Gain Free Electron Laser
(FEL) [1] and Collective Atomic Recoil Laser (CARL) [2] exhibit similar behaviors, showing
self-bunching and exponential enhancement of the emitted radiation. Originally conceived in
a semiclassical framework, they can be as well described quantum-mechanically [3–8]. How-
ever, it is not explicitly evident how to obtain the classical limit starting from the quantum
description. First attempts to give a quantum description of the FEL have been proposed in
the ’80s, starting from a canonical quantization of the N -particle Hamiltonian in the Heisen-
berg picture, to study photon statistics and quantum initialization from vacuum in the linear
regime [4,9]. In 1988, Preparata proposed a quantum field theory of FEL [3], in which he has
shown that, for N � 1, the FEL dynamics is solved by a single-electron Schrödinger equation
coupled to a self-consistent radiation mode. The same model has been recently obtained to
describe CARL from a Bose-Einstein condensate (BEC) at zero temperature [6, 8]. Further-
more, it has been also proved experimentally [10–12] that CARL in a BEC exhibits quantum
recoil effects when the average recoil velocity remains less than the photon recoil limit.
In this letter we start from the classical model describing both CARLs and FELs and we

extend it to the quantum realm showing the correspondence between the Preparata model [3]
and the CARL-BEC model [10]. In particular, it is possible to derive an equation for the
Wigner function of the N -particle system. The Wigner function obeys to a finite-difference
equation which reduces to the classical Vlasov equation [13] in the limit in which the maximum
number of photons emitted per particle is much larger than unity. In the opposite limit, both
CARLs and FELs behave as a two-state system [14–16] described by the well-known Maxwell-
Bloch equations [17].
c© EDP Sciences
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CARL-FEL model. – Apparently, the physics of FEL and CARL appears to be quite
different. The first describes a relativistic high-current electron beam with energy mc2γ0,
injected in a magnet (“wiggler”) with a transverse, static magnetic field Bw and periodicity
λw, which radiates in the forward direction at the wavelength λ ∼ λw(1 + a2

w)/2γ
2
0 , where

aw = eBw/mc
2kw is the wiggler parameter and kw = 2π/λw. Instead, CARL consists of a

collection of two-level atoms in a high-Q ring cavity [18] driven by a far-detuned laser pump
of frequency ωp which radiates at the frequency ω ∼ ωp in the direction opposite to the
pump. In both cases the radiation process arises from a collective instability which originates
a symmetry breaking in the spatial distribution, i.e. a self-bunching of particles which group
in regions smaller than the wavelength.
It can be shown that, under suitable conditions and introducing proper dimensionless

variables, the dynamics of both FELs and CARLs is described by the following Hamiltonian [5]:

H =
N∑

j=1

[
p2j
ρ̄
+ i

√
ρ̄

2N
(
a†e−iθj − h.c.)

]
− δ

ρ̄
a†a, (1)

where θj and pj are the phase operator of the j-th particle and its conjugate momentum opera-
tor, obeying [θj , pj′ ] = iδjj′ . In eq. (1), a and a† are annihilation and creation operators for the
forward radiation mode photon, with [a, a†] = 1. Notice that the dynamics described by eq. (1)
depends only on the parameter ρ̄ and on the detuning δ, properly defined for the two systems:

– For FELs, ρ̄ = qρF and δ = q(γ0 − γr)/γr, where q = mcγr/h̄k, γr =
√
(λw/2λ)(1 + a2

w)
is the resonant energy and ρF = (1/γr)(aw/4ckw)2/3(e2n/mε0)1/3 is the BPN parameter
for a FEL [1], θ = (kw + k)z − ckt, p = q(γ − γ0)/2γr and k = 2π/λ.

– For CARLs, ρ̄ = ρC and δ = (ωP − ω)/ωR, where ωR = 2h̄k2/m is the recoil frequency,
ρC = (S0/ωR)2/3(ωd2n/2h̄ε0)1/3, S0 = ∆Ω/[2(Γ2 + ∆2 + Ω2)], Ω is the pump Rabi
frequency, ∆ is the pump-atom detuning, Γ is the natural decay constant of the atomic
transition and d is the dipole matrix element [19]. Finally, θ = 2kz and p = mvz/2h̄k,
where vz is the longitudinal atomic velocity.

In these definitions, n = N/V is the particle density in the radiation volume V and m is the
particle mass. Notice that in both cases ρ̄ scales as n1/3, i.e. as the reciprocal of the inter-
particle distance. Introducing p̄j = (2/ρ̄)pj and A = (2/Nρ̄)1/2a, the Heisenberg equations
associated with eq. (1) are [1, 2]

dθj
dτ

= p̄j , (2)

dp̄j

dτ
= − (

Aeiθj + c.c.
)
, (3)

dA
dτ

=
1
N

N∑
i=1

e−iθj +
iδ

ρ̄
A, (4)

where j = 1 . . . N and τ = ωRρCt for CARL whereas τ = (4πρF/λw)z for FEL. Considering
the operators θj , p̄j and A in eqs. (2)-(4) as c-numbers, one obtain the well-known classical de-
scription for FEL and CARL. The scaling of eqs. (2)-(4) is called “universal” in the sense that,
assuming resonance (i.e. δ = 0), the equations do not contain any parameter. Hence, the scal-
ing law of the various physical quantities can be obtained from their definition in terms of ρ̄.
In fact, solving eqs. (2)-(4) with an arbitrary small initial field A0 and δ = 0, the dimensionless
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intensity |A|2 reaches a maximum value of the order of unity [1], which corresponds to an av-
erage number of photons |a|2 of the order of Nρ̄, so that ρ̄ is the maximum photon number per
particle, both for FELs and CARLs. Hence, it is expected that when ρ̄� 1 the system behaves
classically, whereas for ρ̄ ≤ 1 quantum effects become relevant. Notice that |A|2 +N−1

∑
j p̄j

is a constant of motion in eqs. (2)-(4), i.e. the radiated intensity is due to the average recoil.

Quantum CARL-FEL model. – In ref. [3], Preparata, using quantum field theory, has
shown that the collective dynamics of the system of N � 1 electrons in an FEL can be
described by means of a single complex scalar quantum field whose behavior is governed by a
Schrödinger-type equation in the self-consistent radiation field, which originates a pendulum-
like potential:

i
∂ψ

∂τ
= −1

ρ̄

∂2ψ

∂θ2
− iρ̄

2
[
Aeiθ − c.c.]ψ, (5)

dA
dτ

=
∫ 2π

0

dθ|ψ|2e−iθ +
iδ

ρ̄
A, (6)

where ψ is normalized to one, i.e.
∫ 2π

0
dθ|ψ(θ, τ)|2 = 1. Note that eq. (5) is the Schrödinger

equation associated to the Hamiltonian (1) and eq. (6) corresponds to eq. (4) when the classical
average of e−iθ is replaced by the quantum ensemble average. Quoting ref. [3], eqs. (5) and (6)
are derived if one “formulates the many-electron problem in the language of quantum field
theory and uses the large number N of electrons to evaluate the resulting path integral by
saddle-point techniques”. Recently, the same model of eqs. (5) and (6) has been used to
describe CARL from a BEC [6, 8, 10]. Hence, we propose the nonlinear system of eqs. (5)
and (6) as the quantum extension of the CARL-FEL classical model. We now show that the
classical equations (2)-(4) are recovered in the limit ρ̄� 1.

Wigner function approach. – Let us consider the standard definition of the Wigner
function for a state with wave function ψ(θ, τ):

W (θ, p, τ) =
1
2π

∫ +∞

−∞
dξ eiξp ψ∗

(
θ − ξ

2
, τ

)
ψ

(
θ +

ξ

2
, τ

)
, (7)

so that ∫ +∞

−∞
dp W (θ, p, τ) = |ψ(θ, τ)|2. (8)

One can show that eq. (5) is equivalent to the following finite-difference equation for the
quasi-probability distribution W (θ, p̄, τ):

∂W (θ, p̄, τ)
∂τ

+ p̄
∂W (θ, p̄, τ)

∂θ
−

− ρ̄
2

[
Aeiθ + c.c.

] [
W

(
θ, p̄+

1
ρ̄
, τ

)
−W

(
θ, p̄− 1

ρ̄
, τ

)]
= 0. (9)

Using eq. (8), eq. (6) becomes

dA
dτ

=
∫ +∞

−∞
dp̄

∫ 2π

0

dθW (θ, p̄, τ)e−iθ +
iδ

ρ̄
A. (10)

We underline again that eqs. (9) and (10) are equivalent to eqs. (5) and (6) using the Wigner
function representation. However, the Wigner function behaves as a classical distribution in
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Fig. 1 – Numerical solution of eqs. (13) and (14) for ρ̄ = 10 (first row), ρ̄ = 1 (second row) and
ρ̄ = 0.2 (third row). The other parameters are δ = 1, A(0) = 10−4 and cn(0) = δn0. Left column:
dimensionless radiation intensity |A|2 vs. τ ; central and right column: occupation probabilities Pn =
|cn|2 vs. n and density distribution |ψ|2 vs. θ, for τ near the first maximum of |A|2.

the limit ρ̄� 1. In fact, in the right-hand side of eq. (9), the incremental ratio [W (θ, p̄+ ε)−
W (θ, p̄ − ε)]/(2ε) → ∂W (θ, p̄)/∂p̄ when ε = 1/ρ̄ → 0. Hence, for ρ̄ � 1, eq. (9) becomes the
Vlasov equation:

∂W (θ, p̄, τ)
∂τ

+ p̄
∂W (θ, p̄, τ)

∂θ
− [
Aeiθ + c.c.

] ∂W (θ, p̄, τ)
∂p̄

= 0, (11)

so that in this limit the Wigner function behaves as a definite positive, classical distribution
function. Equations (10) and (11) are equivalent to the classical equations (2)-(4). This means
that the particles behave classically, following a Newtonian motion, when ρ̄ � 1, i.e. when
the average number of photons scattered per particle is much larger than unity. In this limit,
the quantum recoil effects due to the single-photon scattering process are negligible. On the
contrary, a quantum regime of CARL or FEL occurs when ρ̄ ≤ 1, in which each particle
scatters only one photon. In fact, expanding the wave function in Fourier series as

ψ(θ, τ) =
1√
2π

∑
n

cn(τ)ein(θ+ δ
ρ̄ τ), n = −∞, . . . ,+∞, (12)
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and inserting this ansatz in eqs. (5) and (6), one can easily obtain the following closed set of
equations for 'm,n(τ) = c∗m(τ)cn(τ):

d'm,n

dτ
=

i

ρ̄
(m− n) (δ +m+ n) 'm,n +

+
ρ̄

2
[
Ā ('m+1,n − 'm,n−1) + Ā∗ ('m,n+1 − 'm−1,n)

]
, (13)

dĀ
dτ

=
∞∑

n=−∞
'n−1,n , (14)

where Ā = Ae−i(δ/ρ̄)τ . These equations are equivalent to eqs. (5) and (6) for the density
matrix in the momentum representation and have been discussed in ref. [15]. Figure 1 shows
the numerical solution of eqs. (13) and (14) for ρ̄ = 10 (first row), ρ̄ = 1 (second row) and
ρ̄ = 0.2 (third row). The other parameters are A(0) = 10−4, cn(0) = δn0 and δ = 1, which
corresponds to a single-photon scattering recoil. In the first column |A|2 is plotted as a function
of τ . The central column shows the occupation probabilities Pn = |cn|2 vs. n, whereas the
right column shows the density distribution |ψ|2 vs. θ, for a value of τ near the first maximum
of |A|2. We note that for ρ̄ = 10, the system behaves classically: the momentum states are
occupied in a range of the order of ρ̄ and the average momentum is 〈p〉 ≈ −ρ̄, as can be
seen from the first row of fig. 1. Furthermore, the particle distribution shows periodic narrow
peaks of density. When ρ̄ = 1, the mainly occupied momentum states are those for n = 0
and n = −1, corresponding to particles in the initial state or in the recoil state, respectively.
Finally, when ρ̄ � 1, the dynamics is that of a pure two-level system. In this limit, if the
initially occupied state is the n-th momentum state, the only two momentum states involved
in the interaction are those for n and n − 1, so that eqs. (13) and (14), after defining the
“polarization” Sn = 'n−1,n and the “population difference” Dn = 'n,n − 'n−1,n−1, reduce to
the Maxwell-Bloch equations for a two-state system [17]:

dSn

dτ ′
= −i∆nSn +

1
2
A′Dn , (15)

dDn

dτ ′
= −

(
A′S∗

n +A
′∗Sn

)
, (16)

dA′

dτ ′
= Sn , (17)

where ∆n = (δ − 1 + 2n)/ρ̄3/2, A′ =
√
ρ̄Ā and τ ′ =

√
ρ̄τ . With this new scaling and

assuming resonance (i.e. ∆n = 0), eqs. (15)-(17) do not contain any parameter. Hence, the
characteristic timescale is ruled by

√
n instead of n1/3 as in the classical case. The quantum

regime for CARLs and FELs is analog to the coherent spontaneous-emission regime predicted
quantum-mechanically for a two-level system in ref. [20], where a series of optical “2π-pulses”
are generated. In fact, assuming resonance (i.e. ∆n = 0), A′ and Sn are real. Hence, we
can introduce the “Bloch angle” φ such that Sn = (1/2) sinφ, Dn = cosφ. Then, eqs. (15)-
(17) reduce to a pendulum equation d2φ/dτ ′2 = (1/2) sinφ and dφ/dτ ′ = A′. Hence, in
the quantum regime, the dynamics is that of a pendulum moving away from the unstable
equilibrium point (φ = 0) and undergoing periodically a complete revolution (“2π-pulse”)
with angular velocity A′.
Finally, we note that, adopting the same scaling of eqs. (15)-(17) in eq. (5), this can

be interpreted as a Schrödinger equation for a single particle with a “mass” ρ̄3/2 in a self-
consistent pendulum potential. This provides an intuitive interpretation of the classical limit,
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that holds when the particle’s “mass” is large. The strong differences between the quantum
and classical regimes are evident from fig. 1.

Conclusions. – In this letter we presented a unified quantum model that stands for appar-
ently very different systems as FEL and CARL. The dynamics is described by a Schrödinger
equation in a self-consistent pendulum potential and is ruled by a unique parameter ρ̄ which
represents the maximum number of photons scattered per particle and the maximum momen-
tum recoil in units of the photon recoil momentum. The Schrödinger equation can be trans-
formed into an exact equation for the Wigner quasi-probability distribution. The main results
are the following: i) The classical model is recovered in the limit ρ̄� 1; this because the finite-
difference equation for the Wigner function reduces to the classical Vlasov equation. ii) In the
limit ρ̄ ≤ 1, a completely different dynamical regime occurs (see fig. 1): due to momentum
quantization the system reduces to only two momentum states obeying to the Maxwell-Bloch
equations which describe the dynamics of a two-level atomic system coupled to a coherent field.

∗ ∗ ∗
One of us (RB) has to acknowledge a big mistake he made almost 20 years ago when

G. Preparata, a well-known field theorist, presented to him his general “Quantum Field
Theory of a Free Electron Laser” [3]. RB did not understand this work thinking it was
incorrect. On the contrary, Preparata’s theory was perfectly correct, as recognized in this
letter, which is dedicated to his memory.
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