7 research outputs found

    Kinetic control of the coverage of oil droplets by DNA-functionalized colloids

    Get PDF
    We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a "frozen" degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi-two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity.A.C. acknowledges support from the ETN-COLLDENSE (H2020-MCSA-ITN-2014, grant no. 642774). E.E. and J. Burelbach thank the Winton Programme for the Physics of Sustainability for the Pump Prime Grant and the scholarship award, respectively. D.J. thanks the Udayan Care-VCare grant, the Nehru Trust for Cambridge University, the Schlumberger Foundation’s Faculty for the Future Program, and Hughes Hall Santander Bursary Scholarship. Z.X. thanks the National University of Defense Technology Scholarship at Cambridge. A.S.N., D.E.P.P., and N.A.M.A. acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) (grants EXCL/FIS-NAN/ 0083/2012, UID/FIS/00618/2013, and IF/00255/2013). J. Brujic thanks the Materials Research Science and Engineering Center program of the National Science Foundation under Award DMR-1420073 and L. L. Pontani

    The X-ray side of the absorption by interstellar dust in the Milky Way

    No full text
    X-ray spectroscopy of interstellar dust (ID), seen in absorption against spectra of bright background sources, is a powerful tool to investigate and provide novel information on the chemistry of dust grains. For example, sharp and deep absorption features of Mg, Si, O and Fe, which are the building blocks of silicates, fall in the X-ray band. Therefore X-ray spectroscopy can also successfully study the nature of the iron inclusion in dust. The shift and the structure of a given absorption feature is indeed different for different absorbing dust grains. High-quality data have already revealed that Mg-rich silicates are favored with respect to the Fe-rich population and that Fe is most likely in metallic form. The modeling of spectra of present and future X-ray facilities will take now advantage of our new laboratory measurements, from several species, of the absorption features which are key for a complete understanding of the ID chemistry

    B. Sprachwissenschaft.

    No full text

    Comorbid depression in medical diseases

    No full text
    corecore