1,157 research outputs found
Liquid-gas phase behaviour of an argon-like fluid modelled by the hard-core two-Yukawa potential
We study a model for an argon-like fluid parameterised in terms of a
hard-core repulsion and a two-Yukawa potential. The liquid-gas phase behaviour
of the model is obtained from the thermodynamically self-consistent
Ornstein-Zernike approximation (SCOZA) of Hoye and Stell, the solution of which
lends itself particularly well to a pair potential of this form. The
predictions for the critical point and the coexistence curve are compared to
new high resolution simulation data and to other liquid-state theories,
including the hierarchical reference theory (HRT) of Parola and Reatto. Both
SCOZA and HRT deliver results that are considerably more accurate than standard
integral-equation approaches. Among the versions of SCOZA considered, the one
yielding the best agreement with simulation successfully predicts the critical
point parameters to within 1%.Comment: 10 pages 6 figure
A liquid state theory that remains successful in the critical region
A thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) is
applied to a fluid of spherical particles with a pair potential given by a
hard-core repulsion and a Yukawa attractive tail . This
potential allows one to take advantage of the known analytical properties of
the solution to the Ornstein-Zernike equation for the case in which the direct
correlation function outside the repulsive core is given by a linear
combination of two Yukawa tails and the radial distribution function
satisfies the exact core condition for . The predictions for the
thermodynamics, the critical point, and the coexistence curve are compared here
to other theories and to simulation results. In order to unambiguously assess
the ability of the SCOZA to locate the critical point and the phase boundary of
the system, a new set of simulations has also been performed. The method
adopted combines Monte Carlo and finite-size scaling techniques and is
especially adapted to deal with critical fluctuations and phase separation. It
is found that the version of the SCOZA considered here provides very good
overall thermodynamics and a remarkably accurate critical point and coexistence
curve. For the interaction range considered here, given by , the
critical density and temperature predicted by the theory agree with the
simulation results to about 0.6%.Comment: Prepared for the John Barker festschrift issue of Molecular Physics.
22 pages Latex, 6 ps figure
A complete characterisation of the heralded noiseless amplification of photons
Heralded noiseless amplifcation of photons has recently been shown to provide
a means to overcome losses in complex quantum communication tasks. In
particular, to overcome transmission losses that could allow for the violation
of a Bell inequality free from the detection loophole, for Device Independent
Quantum Key Distribution (DI-QKD). Several implementations of a heralded photon
amplifier have been proposed and the first proof of principle experiments
realised. Here we present the first full characterisation of such a device to
test its functional limits and potential for DI-QKD. This device is tested at
telecom wavelengths and is shown to be capable of overcoming losses
corresponding to a transmission through of single mode telecom
fibre. We demonstrate heralded photon amplifier with a gain and a
heralding probability , required by DI-QKD protocols that use the
Clauser-Horne-Shimony-Holt (CHSH) inequality. The heralded photon amplifier
clearly represents a key technology for the realisation of DI-QKD in the real
world and over typical network distances.Comment: 9 pages, 4 figure
Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature
The field-driven reorientation transition of an anisotropic ferromagnetic
monolayer is studied within the context of a finite-temperature Green's
function theory. The equilibrium state and the field dependence of the magnon
energy gap are calculated for static magnetic field applied in plane
along an easy or a hard axis. In the latter case, the in-plane reorientation of
the magnetization is shown to be continuous at T=0, in agreement with free spin
wave theory, and discontinuous at finite temperature , in contrast with
the prediction of mean field theory. The discontinuity in the orientation angle
creates a jump in the magnon energy gap, and it is the reason why, for ,
the energy does not go to zero at the reorientation field. Above the Curie
temperature , the magnon energy gap vanishes for H=0 both in the
easy and in the hard case. As is increased, the gap is found to increase
almost linearly with , but with different slopes depending on the field
orientation. In particular, the slope is smaller when is along the hard
axis. Such a magnetic anisotropy of the spin-wave energies is shown to persist
well above ().Comment: Final version accepted for publication in Physical Review B (with
three figures
Nonuniform collective dissolution of bubbles in regular pore networks
Understanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, Bk/ℓ, where the constant ℓ is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset
A case of a GH-producing pituitari adenoma associated with a unilateral headache with autonomic signs.
A 66–year–old man suffered from a drug–resistant, leftsided headache with autonomic signs, triggered by the supine position. The acromegalic facies initially suggested a possible increase in basal plasma levels of GH, but routine haematological controls excluded abnormal values of GH. Cerebral and facial CT scan and MRI did not detect any alterations in the nasal sinuses, except for a mucous cyst. Surgical ablation of the cyst did not alleviate the pain. Further endocrinological tests demonstrated an increase of IGF–1 (somatomedin C), and another MRI scan of the sellar region confirmed the presence of a pituitary macroadenoma on the left paramedian side. After an initial improvement of the symptomatology due to trans–sphenoidal ablation of a benign GH–producing macroadenoma, the headache worsened again. Pain was well correlated with the increased plasma levels of IGF–1. The patient died suddenly for myocardial infarct
Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group
The Hierarchical Reference Theory (HRT) of fluids is a general framework for
the description of phase transitions in microscopic models of classical and
quantum statistical physics. The foundations of HRT are briefly reviewed in a
self-consistent formulation which includes both the original sharp cut-off
procedure and the smooth cut-off implementation, which has been recently
investigated. The critical properties of HRT are summarized, together with the
behavior of the theory at first order phase transitions. However, the emphasis
of this presentation is on the close relationship between HRT and non
perturbative renormalization group methods, as well as on recent
generalizations of HRT to microscopic models of interest in soft matter and
quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic
Homocysteine levels and cardiovascular disease in migraine with aura
Clinical studies suggest that hyperhomocysteinemia could be considered an independent risk factor for premature cerebral, peripheral and vascular diseases. A number of authors found an epidemiological correlation between increased risk of cerebrovascular disease and migraine with aura. In this study, 34 patients suffering from migraine with aura and 36 healthy controls were evaluated with respect to total plasma homocysteine levels, measured with FPIA immunoassay in the fasting state and after methionine load. Moreover, vitamin B12, folate and other classic biochemical indicators of atherosclerosis disease were evaluated. In this study, homocysteine levels, both at basal and after load, and other cardiovascular risk factors such as vitamin B12 and apo-LpA were within the normal range. Other multicentric randomised trials are needed to carry on and confirm these data
Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field
The static and dynamic properties of the single-chain molecular magnet
[Co(hfac)NITPhOMe] are investigated in the framework of the Ising model
with Glauber dynamics, in order to take into account both the effect of an
applied magnetic field and a finite size of the chains. For static fields of
moderate intensity and short chain lengths, the approximation of a
mono-exponential decay of the magnetization fluctuations is found to be valid
at low temperatures; for strong fields and long chains, a multi-exponential
decay should rather be assumed. The effect of an oscillating magnetic field,
with intensity much smaller than that of the static one, is included in the
theory in order to obtain the dynamic susceptibility . We find
that, for an open chain with spins, can be written as a
weighted sum of frequency contributions, with a sum rule relating the
frequency weights to the static susceptibility of the chain. Very good
agreement is found between the theoretical dynamic susceptibility and the ac
susceptibility measured in moderate static fields ( kOe),
where the approximation of a single dominating frequency turns out to be valid.
For static fields in this range, new data for the relaxation time,
versus , of the magnetization of CoPhOMe at low temperature are
also well reproduced by theory, provided that finite-size effects are included.Comment: 16 pages, 9 figure
Glauber slow dynamics of the magnetization in a molecular Ising chain
The slow dynamics (10^-6 s - 10^4 s) of the magnetization in the paramagnetic
phase, predicted by Glauber for 1d Ising ferromagnets, has been observed with
ac susceptibility and SQUID magnetometry measurements in a molecular chain
comprising alternating Co{2+} spins and organic radical spins strongly
antiferromagnetically coupled. An Arrhenius behavior with activation energy
Delta=152 K has been observed for ten decades of relaxation time and found to
be consistent with the Glauber model. We have extended this model to take into
account the ferrimagnetic nature of the chain as well as its helicoidal
structure.Comment: 4 pages, 4 figures (low resolution), 16 references. Submitted to
Physical Review Letter
- …