96 research outputs found

    A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry

    Get PDF
    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions

    Factitious Cushing's Syndrome: A Diagnosis to Consider When Evaluating Hypercortisolism

    Get PDF
    Factitious Cushing's syndrome is exceptionally rare. The diagnosis is challenging due to the interference of exogenous corticosteroids with cortisol immunoassays. We present a case of a 26 year old female that presented with clinical and biochemical features of Cushing's syndrome. She denied any exogenous corticosteroid use. She had a suppressed ACTH level with normal adrenal glands on CT scans. There was a paradoxical increase of cortisol with a 100% rise in 24 h urinary free cortisol (UFC) during the Liddle's test suggestive of primary pigmented nodular adrenocortical disease (PPNAD). However, basal UFC levels were within normal values, interpreted as an intermittent variation of cortisol secretion maybe due to cyclic Cushing's. At this point a synthetic glucocorticoid serum screening was ordered, which was denied by the administrators because the test was not available in our hospital. A positron emission tomography (PET)-CT using 18 F-Flurodeoxyglucose did not show any uptake in the adrenal glands. With the diagnosis of probable primary pigmented nodular adrenocortical disease a unilateral right adrenelectomy was performed. Histopathological examination revealed normal adrenal gland. A synthetic glucocorticoid serum screen by liquid chromatography-tandem mass spectrometry (LC-MS/MS) sent to Mayo Clinic lab revealed high levels of serum prednisone and prednisolone. In conclusion, factitious Cushing's syndrome is an important diagnosis to consider in patients being evaluated for hypercortisolism. Discordant hormonal test results as well as normal findings on adrenal glands on CT scan should raise suspicion of this entity, and prompt measurement of synthetic corticosteroids using LC-MS/MS

    Pituitary society guidance: pituitary disease management and patient care recommendations during the COVID-19 pandemic—an international perspective

    Get PDF
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral strain that has caused the coronavirus disease 2019 (COVID-19) pandemic, has presented healthcare systems around the world with an unprecedented challenge. In locations with significant rates of viral transmission, social distancing measures and enforced ‘lockdowns’ are the new ‘norm’ as governments try to prevent healthcare services from being overwhelmed. However, with these measures have come important challenges for the delivery of existing services for other diseases and conditions. The clinical care of patients with pituitary disorders typically involves a multidisciplinary team, working in concert to deliver timely, often complex, disease investigation and management, including pituitary surgery. COVID-19 has brought about major disruption to such services, limiting access to care and opportunities for testing (both laboratory and radiological), and dramatically reducing the ability to safely undertake transsphenoidal surgery. In the absence of clinical trials to guide management of patients with pituitary disease during the COVID-19 pandemic, herein the Professional Education Committee of the Pituitary Society proposes guidance for continued safe management and care of this population

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Pituitary Society Delphi Survey: An international perspective on endocrine management of patients undergoing transsphenoidal surgery for pituitary adenomas.

    Get PDF
    PURPOSE: In adults and children, transsphenoidal surgery (TSS) represents the cornerstone of management for most large or functioning sellar lesions with the exception of prolactinomas. Endocrine evaluation and management are an essential part of perioperative care. However, the details of endocrine assessment and care are not universally agreed upon. METHODS: To build consensus on the endocrine evaluation and management of adults undergoing TSS, a Delphi process was used. Thirty-five statements were developed by the Pituitary Society's Education Committee. Fifty-five pituitary endocrinologists, all members of the Pituitary Society, were invited to participate in two Delphi rounds and rate their extent of agreement with statements pertaining to perioperative endocrine evaluation and management, using a Likert-type scale. Anonymized data on the proportion of panelists' agreeing with each item were summarized. A list of items that achieved consensus, based on predefined criteria, was tabulated. RESULTS: Strong consensus (≥ 80% of panelists rating their agreement as 6-7 on a scale from 1 to 7) was achieved for 68.6% (24/35) items. If less strict agreement criteria were applied (ratings 5-7 on the Likert-type scale), consensus was achieved for 88% (31/35) items. CONCLUSIONS: We achieved consensus on a large majority of items pertaining to perioperative endocrine evaluation and management using a Delphi process. This provides an international real-world clinical perspective from an expert group and facilitates a framework for future guideline development. Some of the items for which consensus was not reached, including the assessment of immediate postoperative remission in acromegaly or Cushing's disease, represent areas where further research is needed

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades

    Get PDF
    G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3′-5′-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:βγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades
    corecore