11,194 research outputs found

    Renormalization group improvement of the spectrum of Hydrogen-like atoms with massless fermions

    Get PDF
    We obtain the next-to-next-to-leading-log renormalization group improvement of the spectrum of Hydrogen-like atoms with massless fermions by using potential NRQED. These results can also be applied to the computation of the muonic Hydrogen spectrum where we are able to reproduce some known double logs at O(m\alpha^6). We compare with other formalisms dealing with log resummation available in the literature.Comment: 9 pages, LaTeX. Minor changes, note added, final versio

    Modeling of the Sub-Tg Relaxation Spectrum of Pd42.5Ni7.5Cu30P20 Metallic Glass

    Get PDF
    In this work we study the mechanical relaxation spectrum of Pd42.5Ni7.5Cu30P20 metallic glass. The effect of aging on the relaxation behavior is analyzed by measuring the internal friction during consecutive heating runs. The mechanical relaxation of the wellannealed glass state is modeled by fitting susceptibility functions to the primary and secondary relaxations of the system. The model is able to reproduce the mechanical relaxation spectrum below the glass transition temperature (sub-Tg) in the frequency- temperature ranges relevant for the high temperature physical properties and forming ability of metallic glasses. The model reveals a relaxation spectrum composed by the overlapping of primary and secondary processes covering a wide domain of times but with a relatively narrow range of activation energies.Postprint (author's final draft

    Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum

    Get PDF
    We complete the leading-log renormalization group scaling of the NRQCD Lagrangian at O(1/m2)O(1/m^2). The next-to-next-to-leading-log renormalization group scaling of the potential NRQCD Lagrangian (as far as the singlet is concerned) is also obtained in the situation mαsΛQCDm\alpha_s \gg \Lambda_{QCD}. As a by-product, we obtain the heavy quarkonium spectrum with the same accuracy in the situation m\alpha_s^2 \simg \Lambda_{QCD}. When ΛQCDmαs2\Lambda_{QCD} \ll m\alpha_s^2, this is equivalent to obtain the whole set of O(mαs(n+4)lnnαs)O(m\alpha_s^{(n+4)} \ln^n \alpha_s) terms in the heavy quarkonium spectrum. The implications of our results in the non-perturbative situation mαsΛQCDm\alpha_s \sim \Lambda_{QCD} are also mentioned.Comment: 16 pages, LaTeX. Minor changes. Final versio

    Preparing the bound instance of quantum entanglement

    Full text link
    Among the possibly most intriguing aspects of quantum entanglement is that it comes in "free" and "bound" instances. Bound entangled states require entangled states in preparation but, once realized, no free entanglement and therefore no pure maximally entangled pairs can be regained. Their existence hence certifies an intrinsic irreversibility of entanglement in nature and suggests a connection with thermodynamics. In this work, we present a first experimental unconditional preparation and detection of a bound entangled state of light. We consider continuous-variable entanglement, use convex optimization to identify regimes rendering its bound character well certifiable, and realize an experiment that continuously produced a distributed bound entangled state with an extraordinary and unprecedented significance of more than ten standard deviations away from both separability and distillability. Our results show that the approach chosen allows for the efficient and precise preparation of multimode entangled states of light with various applications in quantum information, quantum state engineering and high precision metrology.Comment: The final version accounts for a recent comment in Nature Physics [24] clarifying that a previous claim of having generated bound entanglement [23] was not supported by the authors' data. We also extended our introduction and discussion and also added reference
    corecore