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Abstract: In this work we study the mechanical relaxation spectrum of Pd42.5Ni7.5Cu30P20 

metallic glass. The effect of aging on the relaxation behavior is analyzed by measuring the 

internal friction during consecutive heating runs. The mechanical relaxation of the well-

annealed glass state is modeled by fitting susceptibility functions to the primary and 

secondary relaxations of the system. The model is able to reproduce the mechanical 

relaxation spectrum below the glass transition temperature (sub-Tg) in the frequency-



temperature ranges relevant for the high temperature physical properties and forming 

ability of metallic glasses. The model reveals a relaxation spectrum composed by the 

overlapping of primary and secondary processes covering a wide domain of times but with 

a relatively narrow range of activation energies. 

INTRODUCTION 

The mechanical relaxation behavior of metallic glasses is strongly related to the plastic 

and viscous deformation mechanisms as well as to the physical aging process. The 

microscopic mechanisms allowing the glassy structure to relax under an external 

mechanical perturbation must be similar to those involved in plasticity and viscous flow 

under continuous deformation. In addition, they are expected to be closely linked to those 

changing the glass structure towards more stable states during physical aging, as this 

process is driven by the release of internal stresses quenched-in during the glass formation 

process. 

Mechanical relaxation of metallic glasses can be probed by quasi-static or by oscillatory 

measurements. In quasi-static measurements, a constant stress 0σ (or strain 0ε ) is 

‘instantaneously’ applied and the time evolution of strain ( )tε  (or stress ( )tσ ) is 

characterized by a response function ( )tϕ  which usually has the look of a stretched 

exponential decay. In oscillatory measurements, the ratio between stress and strain is given 

by the complex elastic modulus ( ) ( ) ( )ωωω MiMM ′′+′=  composed by the storage ( M ′ ) 

and loss ( M ′′ ) moduli and determined by a frequency-domain response function ( )ωχ 1. 

The general form of the complex modulus obtained by mechanical spectroscopy is 

( ) ( ) ( ) ( ) −∆−∆−= TMTMTMTM ,,, 0 ωχωχω ββαα  (1) 



where 0M  is the high-frequency limit modulus while iM∆ and ( )Ti ,ωχ  are the intensity 

and the frequency-domain response function of the different relaxation processes present in 

the material. 0M  and iM∆  are real magnitudes while ( ) ( ) ( )TiTT iii ,,, ωχωχωχ ′′−′=  

determines the shape of both the storage modulus decay and the loss modulus peak. M

corresponds to the Young’s, shear or bulk modulus depending on the loading mode used in 

the experiment. The complex modulus behavior can be characterized by fixing the 

frequency while scanning temperature (isochronal measurements) or by fixing the 

temperature while scanning frequency (isothermal measurements).  

The mechanical relaxation spectrum, ( )TM ,ω′′ , of Pd-based metallic glasses was 

recently characterized by Qiao et al.2,3. As expected, the elastic-solid/viscous-liquid 

transition was governed by the α-relaxation with a main relaxation time ( )Tατ  following a 

Vogel-Fulcher-Tamman4–7 (VFT) behavior at temperatures above the glass transition 

temperature gT . The shape of the response function ( )T,ωχα  
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was found consistent with a Kohlrausch-Williams-Watts (KWW) stretched exponential 

relaxation in the time domain8 

( ) ( )( )[ ]KWWTtTt β
αα τϕ −= exp, . (3) 

Many different metallic glasses have been characterized by mechanical spectroscopy. 

Although different values of KWWβ  are reported depending on the experimental technique 

or the relaxation state of the glass9, the survey of the experimental data evidences that 

metallic glasses show a stretching exponent KWWβ ~0.5 independently of compositional or 

liquid fragility differences8,10. 



In the case of Pd-based metallic glasses, the relaxation peak shows an obvious shoulder at 

lower temperatures (for isochronal measurements) or, equivalently, at higher frequencies 

(for isothermal measurements). This shoulder is associated with a secondary process (β-

relaxation) and, although with different degrees of intensity, was observed in all Pd-based 

alloys3. The presence of secondary relaxations has been found in many other metallic 

glasses11,12. In some systems, particularly La-based glasses, a distinguishable secondary 

relaxation is observed well separated from the α-peak13–15. In these latter cases the analysis 

of the two processes can be performed more easily, allowing one to determine both the 

shape of the response function ( )T,ωχβ  as well as the temperature dependence of the 

corresponding relaxation time ( )Tβτ . In other glassy systems, for instance Cu-Zr-based 

glasses, only an excess wing of the α-process is detected at temperatures below the glass 

transition16. The characterization of the secondary process in these systems is harder as it is 

almost completely overlapped with the α-peak tail generated when ( )Tατ  changes form 

liquid (VFT) to glassy (Arrhenius) behavior at gTT < 9,17. 

In Pd-based metallic glasses the secondary process is partially overlapped with the main 

α-relaxation. This allows one the determination of many of its characteristics, particularly 

in the highest frequency region, but in the overlapping region the contributions of both 

processes are difficult to discriminate. Qiao et al. showed this clearly in figure 10b of ref. 2 

where the superposition of the two relaxation models proposed for the α and β processes 

does not reproduce the intermediate region. The aim of this work is to obtain explicit 

relaxation functions able to model the relaxation spectrum ( )TM ,ω′′  of Pd42.5Ni7.5Cu30P20 

metallic glass between room temperature and the glass transition, and relaxation times 



ranging from hours to seconds. This temperature-time window comprises most of the 

mechanical tests as well as cold-working and forming processes applied to metallic glasses. 

The Pd42.5Ni7.5Cu30P20 system is one of the most studied metallic glasses due to its 

outstanding stability against crystallization and excellent glass forming ability (GFA). It is 

chosen here as a representative of the Pd-based glasses showing partial overlapping 

between α and β relaxations based on previous dynamic mechanical analysis (DMA) 

experiments. The change of the relaxation spectrum due to physical aging is examined by 

exploring the loss modulus and the viscosity of different relaxation states. This allows us to 

discriminate the effect of in situ physical aging on the internal friction of the glass, as well 

as to compare the activation energy of viscous flow and mechanical relaxation in the glassy 

state. Finally, the current understanding of the nature of α and β relaxations is discussed 

and assessed considering the presented results. 

EXPERIMENTAL METHODS 

The rapidly-quenched ribbons were prepared by melt spinning of bulk samples of 

Pd42.5Ni7.5Cu30P20 under argon atmosphere. The copper wheel linear velocity was set at 40 

m/s, obtaining amorphous ribbons of 30±5 µm and an estimated cooling rate of 105-6 K/s 

during the quenching process. The amorphous character of the samples was confirmed by 

X-ray diffraction in a Bruker D8 Advance apparatus with Cu-Kα radiation. Differential 

scanning calorimetry (DSC) was performed using a NETZSCH 404 F3 equipment. The 

onset of the glass transition was detected in the range going from 553 to 567 K when 

applying constant heating rates from 2 K/min to 20 K/min. The onset of crystallization was 

detected at 620 K (at 2 K/min) and 650 K (at 20 K/min). The span between glass transition 

and crystallization was always larger than 60 K, as expected for this high-GFA alloy. The 



dynamic mechanical analysis and elongation measurements were performed with a TA 

Instruments Q800 DMA in tension mode. The DMA measurements were recorded by 

applying oscillation amplitudes of 5 µm (equivalent to a strain of 0.05%). 

RESULTS. A) EXPERIMENTAL MEASUREMENTS 

Figure 1 shows the loss modulus ( )TM ,ω′′  measured at constant frequency πω 2 =1 Hz 

during consecutive 2 K/min heating ramps. The thermal protocol applied to the samples is 

shown in the inset of the figure; the final temperatures of the consecutive runs were set at 

420, 470, 520, 570 and 585 K, respectively. As shown in the figure, the in situ physical 

aging during the annealing treatments is clearly reflected in a progressive diminution of the 

loss modulus and, consequently, of the internal friction. As expected from previous studies 

on metallic glasses18 the background of the loss modulus at <T  400 K is progressively 

reduced due to physical aging. Furthermore, the shoulder of the relaxation peak, associated 

with the secondary relaxation process, is progressively reduced and shifted towards higher 

temperatures. The last run is performed after reaching a temperature above the calorimetric 

glass transition region in the previous one, although the sample is then well relaxed it still 

shows an evident shoulder overlapped with the low-temperature tail of the main α-

relaxation. Further annealing does not produce significant changes in the mechanical 

relaxation spectrum. 



 

Figure 1. Loss modulus measured at a constant frequency of 1 Hz during consecutive 

heating runs. Inset: Thermal protocol applied to the samples. Different colors correspond to 

the corresponding consecutive heating runs.  

Figure 2 shows the viscosity measured during the same thermal protocol. The shear 

viscosity was calculated from the measurement of the longitudinal viscosity as εση 3=  

applying a constant static tensile force of 0.8 N and correcting the parasitic thermal 

expansion contribution of the equipment. The estimated error in the strain rate 

measurement is below 10-3 s-1. The low stress applied during these measurements results in 

very low strain rates, thus assuring that the error induced by the reduction of the cross 

section of the ribbons is not significant until temperatures above 580 K. The right axis 

shows the corresponding relaxation times for viscous flow estimated as 0Gητ =  with 0G = 

30 GPa, which is the shear modulus expected for Pd-Ni-Cu-P amorphous alloys. As 

described in detail by Khonik et al.19,20 the viscosity below gT  is dependent on the heating 

rate of the measurement as ( ) ( ) TTfTT  log,log −=η ; a shift due to the heating rate is also 



expected for the internal friction DMA measurements21,22. In this work all DMA and 

elongation measurements were performed at the same 2 K/min heating rate. 

 

Figure 2. Viscosity measured at consecutive heating runs with the same annealing protocol 

as detailed in figure 1. Different colors correspond to the corresponding consecutive 

heating runs. Lines correspond to the average relaxation-time vs temperature behaviors 

τα(T) (solid line) and τβ(T) (dashed line) proposed in the model (see below). The τα(T) 

changes from a VFT to Arrhenius behaviors at the liquid/glass transition, the extrapolation 

of the VFT behavior in the glass region is also depicted with a dashed line. Grey zone 

indicates the calorimetric glass transition region at the applied 2 K/min heating rate.  

The effect of aging is clearly visible in the elongation behavior; the difference in 

viscosity between as-quenched and annealed ribbons is higher than one order of magnitude. 

The red line corresponds to relaxed ribbons (pre-annealed above glass transition) and it 

shows three different flow regions; below 525 K, between 525 K and gT , and above gT . In 

the low temperature region the viscosity is very high and diminishes slightly with 

increasing temperature, in this region the viscosity obtained from quasi-static creep 



measurements is in well agreement with the one measured by monitoring elongation under 

continuous heating23. Above 525 K the viscosity decreases more rapidly with temperature, 

showing the expected change from glassy to liquid behavior at the glass transition region. 

Above gT  viscosity agrees well with the VFT behavior (solid line) calculated from the α-

peak temperature position or from the liquid fragility as discussed below. 

Relaxed ribbons, heated up to 573 K (above the glass transition) and cooled down to 313 

K were subsequently analyzed by DMA. Both heating and cooling rates were set to 2 

K/min. With this pre-annealing protocol the isochronal measurement at 2 K/min is expected 

to show the response of an isoconfigurational state with very small contribution of in situ 

physical aging while in the glassy state. Defining gT  as the calorimetric glass transition 

temperature detected at the same heating rate, the studied temperature range can be divided 

into two regions; one corresponding to an equilibrated supercooled liquid ( gTT > ), the 

other corresponding to a glassy state ( gTT < ). In the latter region the system is congealed in 

an out-of-equilibrium configuration with the applied heating rate fast enough to avoid 

equilibration. Isochronal measurements of ( )TM ,ω′  and ( )TM ,ω′′  of relaxed ribbons 

performed at different frequencies are shown in figure 3. The dynamic glass transition 

detected at the different frequencies is clearly observed by the decay of the storage modulus 

and the main α-peak of the loss modulus. The dynamic glass transition for the range of 

frequencies studied occurs clearly above the calorimetric glass transition region. 



 

Figure 3. Isochronal measurements of loss modulus at 0.1, 1 and 10 Hz, respectively. The 

measurements were performed at constant 2 K/min heating rate. The samples were 

previously pre-annealed above Tg in order to avoid in situ physical aging during the 

measurements. Solid lines correspond to the model proposed in this work (see below). Inset 

shows the measurements of storage modulus. Grey zone indicates the calorimetric glass 

transition region at the applied 2 K/min heating rate. 

RESULTS. B) MODELING OF PRIMARY AND SECONDARY RELAXATIONS 

Similarly to previous works24, the model is based on two relaxation processes (α and β). 

The modeling is performed for an isoconfigurational glass, i.e. it does not suffer in situ 

physical aging during the isochronal DMA measurements. Therefore, at temperatures 

below the glass transition the system is considered to be arrested in a one particular glassy 

state. For this isoconfigurational state the average relaxation times of the α and β processes, 

( )Tατ  and ( )Tβτ , will be assumed to follow an Arrhenius behavior 
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determined by the pre-exponential factors 0,iτ  and the activation energies iE . As already 

noted above, the assumption of an Arrhenius-like behavior for the sub-Tg α-relaxation is 

only valid if the glass structure is not changing during the experimental probe1,25,26. The 

Arrhenius behavior of isoconfigurational viscosity of metallic glasses was already 

described by Taub and Spaepen27,28. 

When the temperature is above gT , the relaxation time of the α-process is assumed to 

follow a VFT function1,29 
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characterized by the empirical parameters liq
0,ατ , B  and 0T . The local ( )Tατ  behavior within 

a narrower temperature range at T ≳ gT  can also be described by a fragility parameter, m , 

or an apparent activation energy, liqEα , which are then related to the VFT parameters by 
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Here it must be noted that liqEα  is linked to the fragility of the equilibrated liquid by 

equation 6 and therefore it is unique for a given substance. On the contrary, the activation 

energy αE  in equation 4 is specific of a given glassy configuration and may change with 

the thermal history of the sample. In other words, the supercooled liquid above gT  is in 

internal equilibrium and shows a unique ( )Tατ  equation while the relaxation time behavior 

in the glassy state is dependent on the particular glass configuration. The merging of the α 



and β processes at temperatures above gT  is modeled by assuming that the dynamics of the 

secondary process changes progressively from Arrhenius to VFT behavior at gTT > , both 

processes merging at the dynamic glass transition. 

It is well known that the amorphous structure of liquids and glasses generates a broad 

distribution of activation energies for structural rearrangements and, consequently, of 

relaxation times. In this sense, it is important to clarify that equations 4 and 5 determine 

only the temperature dependence of the average relaxation times; the effect of the 

relaxation-time distributions around these average values is taken into account by the shape 

of the response functions ( )( )Tαα τωχ ,  and ( )( )Tββ τωχ ,  as discussed below. 

The activation energies governing the behaviors described in equations 4 and 5 are 

determined by different means. The glass transition temperature is fixed at gT =560 K, this 

corresponds to the inflection point of the calorimetric glass transition signal detected when 

applying a 2 K/min heating rate. The VFT function parameters are fitted from the positions 

of the α-peak maxima at different frequencies obtaining B =4400±10 K, 0T =436±1 K and 

liq
0,ατ =8.2±0.3×10-14 s. These values produce a fragility parameter m =69 and an apparent 

activation energy liqEα =744 kJ/mol when evaluated at gT =560 K. The values of fragility 

and VFT parameters are in good agreement with the ones obtained for Pd-Ni-Cu-P glassy 

alloys3,30. The activation energy of the β-relaxation, βE , is obtained assuming that the two 

extremes of the frequency spectrum show only the contribution of one of the processes. In 

this case the time-temperature superposition (TTS) principle can be applied; if the process 

is controlled by an activation energy, the measurements at different frequencies converge in 

a master curve when shifted by the factor 10lnRTEact  in a log-log plot. Figure 4 shows 



the α and β regions of the loss modulus at different frequencies joined into master curves 

when shifted using liqEα =744 kJ/mol (determined from the VFT parameters) and βE =165 

kJ/mol (determined using the TTS principle). Finally, αE , which defines the sub-Tg ( )Tατ  

behavior in the overlapping region, is approached to be 230 kJ/mol from the viscosity 

measurements shown in figure 2. 

 

Figure 4. Log-log plots of the α-region (left) and the β-region (right) of the loss modulus 

shifted by the corresponding activation energies liqEα  and βE . The dashed line corresponds 

to a CC-function with broadening parameter α =0.5.  

Two ( )( )Tαα τωχ ,  and ( )( )Tββ τωχ ,  response functions will be proposed here to describe 

the α and β relaxations. For the α-process the response of the system will be approximated 

by a Cole-Cole (CC) function31  

( )
( )( )αα

α ωτ
ωχ

Ti
T

+
=

1
1, . (7) 



Here it should be noticed that subscripts refer to the α-process while exponent α  is the 

broadening parameter of the function. The imaginary part ( )T,ωχα′′  of the CC-function 

gives a symmetric peak respect to ωlog  and it is only able to reproduce the low-

temperature (or high-frequency) side of the α-relaxation of metallic glasses8; in order to 

reproduce the whole shape an asymmetric function like Havriliak-Negami function32 or the 

direct Fourier transform of the KWW function (equation 2) would have to be considered. 

As the aim of this work is to model the low-temperature (high-frequency) side region of the 

main relaxation, particularly the overlapping with the secondary relaxation, the use of the 

one-parameter CC-function is chosen in order to reduce the complexity of the model. In 

such sense, the important feature is that the decay of the high-frequency side coincides with 

the Fourier transform of the KWW function ( ( )Tt,αϕ  of equation 3) if KWWβα = 33,34. 

Following ref. 8,10 a value of KWWβα = =0.5 will be assumed for the α-relaxation and its 

intensity is adjusted to 08.0 MM =∆ α .   

After subtracting the α-relaxation modeled by equations 4, 5 and 7 with the parameters 

specified just above, the experimental secondary relaxation is shown in figure 5. The shape 

of the secondary process corresponds to a broad and blunt peak with an intensity 

02.0 MM =∆ β . The use of Havriliak-Negami (HN), Cole-Davidson (CD) or CC functions 

is not able to describe the bluntness of the experimental peak. For this reason a more 

general Bergman function35 

( )
( )( ) ( )( )[ ] CTaTb

ba
C

pT
ba ++

+
−

=′′
− ωτωτ

ωχβ 1,  
(8) 

is chosen to model the shape of the secondary process. A discussion of the basic traits of 

the diverse response functions used in the study of the relaxation phenomena in amorphous 



substances is given in refs. 33,35; for the Bergman function parameters a  and b  determine 

respectively the slope of the low and high-frequency tails, parameter C  sets the bluntness 

of the peak and parameter p is used to adjust the height of the relaxation peak. Figure 5 

shows the best fitting of the Bergman function given by a =0.58, b =0.67, p=0.18 and C

=0.86. 

 

Figure 5. Symbols; Experimental M ′′ after subtracting the contribution of αM ′′  modeled by 

equations 4, 5 and 7. Line; The fitted Bergman function used to model the secondary 

relaxation βM ′′ .  

The result of the model proposed for ( )TM ,ω′′  adding the contribution of the two 

relaxation processes is depicted by continues lines and compared with experimental data 

(symbols) in figure 3 above. The explicit contribution of the two relaxation functions and 

the reproduction of the experimental overall behavior for the case of 1 Hz are shown in 

figure 6. In next section the validity and reasonableness of the approaches used in the 

modeling will be discussed, here it is noticed that the experimental data is well-described 



within the frequency and temperature range usually probed by mechanical spectroscopy of 

metallic glasses. 

 

Figure 6. Experimental loss modulus at 1 Hz (symbols) compared with the results of the 

model (lines). The contributions of each process are depicted for further discussion. Inset 

shows the secondary process as modeled by a Bergman function and an Arrhenius 

temperature-dependence of the average relaxation time.  

DISCUSSION 

The effect of physical aging, as seen in figures 1 and 2, is huge on both loss modulus and 

viscosity. Considering the two figures, it is clear that the higher loss modulus observed in 

the first heating-cooling cycles coincides in temperature with physical aging driving the 

system towards states of higher viscosity. This implies that the physical aging occurring at 

a heating rate of 2 K/min is significant when structural movements with characteristic times 

corresponding to frequencies between 0.1 to 10 Hz become thermally activated. Future 

work is needed in order to assess quantitatively the relationship between the degree of 

aging and the internal friction response of metallic glasses. The model presented here can 



be used to estimate the loss modulus at low temperatures and frequencies below the 

attainable experimental window of conventional DMA measurements and, therefore, it may 

be used for studying the relationship between the intrinsic relaxation processes of the 

material and the activation of physical aging at lower temperatures and longer annealing 

times.  

The relaxed state (red line in figure 1) of Pd42.5Ni7.5Cu30P20 still shows a significant 

amount of low temperature internal friction, as noticed by the prominent loss modulus 

shoulder. This is not the case in other metallic glasses in which well relaxed states only 

show a low-temperature excess wing of the primary relaxation9,17,34. The presence of sub-Tg 

mechanical relaxation with significant intensity is found in most Pd-based metallic glasses 

and it is probably related to the good ductility shown by this family of amorphous metals36. 

The model developed here can be used to estimate the intensity of the mechanical 

relaxation processes at low frequencies, this giving information on the slow processes 

involved in the plastic deformation of metallic glasses. 

The model presented is based on the following main simplifications: 1) The unrelaxed 

storage modulus 0M  is considered not dependent on temperature. Actually, 0M  is expected 

to decrease monotonically with temperature due to thermal expansion of the structure. The 

effect on the loss modulus (imaginary part) is small, as the work is focused on the loss 

modulus this effect has not been taken into account. In order to reproduce the experimental 

storage modulus this temperature dependence should be introduced in the model. 2) The 

primary relaxation is modeled by the one parameter CC-function. The symmetric CC 

function is not able to reproduce the high temperature region above the dynamic glass 

transition8, here we adopted this simplification as the interest is focused on the sub-Tg 



region. 3) The sub-Tg relaxation is assumed as consequence of just two processes. 

However, the broad relaxation secondary peak suggests a contribution of different 

processes covering a wide range of relaxation times, as observed by direct spectrum 

analysis of strain or stress relaxation in other metallic glasses37–41. 

As shown in figures 3 and 6, in spite of these simplifications the model is able to describe 

the sub-Tg loss modulus with good agreement to the experimental data. Moreover, the 

analysis presented in this work permits to clearly visualize some of the main properties of 

the relaxation spectrum of Pd-based glasses. Contrary to other systems like La-based and 

Fe-based glasses, which show a well differentiated secondary peak, Pd42.5Ni7.5Cu30P20 glass 

shows a broad and blunt secondary peak that cannot be modeled neither by the Fourier 

transform of a stretched exponential nor by the commonly used HN and CC functions. The 

simplification considering just two relaxation processes permits to estimate the temperature 

behavior of the average relaxation times, ( )Tατ  and ( )Tβτ , and the corresponding 

activation energies as shown in figure 2. However, the broad shape of the Bergman 

function needed to model the secondary process suggests that, below Tg, the system 

presents a broad distribution of relaxation mechanisms. These relaxations become gradually 

activated as temperature increases and progressively transform the low temperature elastic 

solid into a viscous liquid above Tg. In fact, the activation of viscous flow is observed 

below the glass transition at the same temperatures at which the tail of α-relaxation starts 

contributing to the loss modulus. 

Surprisingly, this broad distribution of relaxation processes shows average activation 

energies within a rather narrow range of 160-230 kJ/mol. All the detected relaxation 

processes, including the faster events responsible of the low temperature tail of the 



secondary peak (at temperatures more than 100 K below Tg) as well as the slow primary 

relaxation responsible of viscous flow near Tg show activation energies within this range. 

This is in contradiction with the potential energy landscape view of a secondary process 

with much lower activation energy barrier than the primary relaxation42,43. 

In many previous analyses, the activation energies were calculated in the glassy state (T < 

Tg) for β-relaxation and in the liquid state (T > Tg) for α-relaxation. The analysis presented 

here shows that at the same temperature the two processes has to surpass energy barriers 

not too different. The picture that emerges is the following; at temperatures below but near 

glass transition there are thermal activated structural movements which allow the system to 

relax and eventually flow under an applied stress. Whether or not these movements are 

collective is dictated by the duration of the applied stress. Under short stress cycles, the 

structural movements do not have time to align in a collective response and they just 

generate internal friction while, under constant stress, they concatenate resulting in 

complete relaxation or viscous flow after a long time. However, the average energy barriers 

controlling the activation of both short and long structural movements are not too different. 

In order to further elucidate this point a direct spectrum analysis from quasi-static stress 

relaxation measurements is currently undertaken and will be presented in future work.  

CONCLUSIONS 

The sub-Tg mechanical relaxation spectrum of Pd42.5Ni7.5Cu30P20 metallic glass is 

characterized by the overlapping between secondary and primary relaxations. The 

experimental response at different temperatures and frequencies has been successfully 

modeled by considering two relaxation processes with average relaxation times ( )Tατ  and 

( )Tβτ . The model assumes Arrhenius-like dependences below glass transition and a VFT-



type behavior in the equilibrated super-cooled liquid state. Viscosity measurements show 

that α-relaxation remains active within the 0.9Tg-Tg region with apparent activation energy 

lower than in the equilibrated liquid above the calorimetric Tg, and not too higher than that 

of the secondary process. The application of the model may help estimating the relaxation 

spectrum at frequencies and temperatures not attainable by the usual mechanical 

spectroscopy techniques. 
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