12 research outputs found

    Cholesterol metabolism in apolipoprotein E4 mice

    Get PDF
    Carrying at least one apolipoprotein E ε4 allele (E4+) is the main genetic risk factor for Alzheimer's disease (AD). Epidemiological studies support that consuming fatty fish rich in docosahexaenoic acid (DHA; 22:6ω3) is protective against development of AD. However, this protective effect seems not to hold in E4+. The involvement of APOE genotype on the relationship between DHA intake and cognitive decline could be mediated through cholesterol. Many studies show a link between cholesterol metabolism and AD progression. In this study, we investigated whether cholesterol metabolism is improved in E3+ and E4+ mice consuming a diet rich in DHA. Plasma cholesterol was 36% lower in E4+ mice compared to E3+ mice fed the control diet (P=.02), and in the liver, there was a significant genotype effect where cholesterol levels were 18% lower in E4+ mice than E3+ mice. The low-density lipoprotein receptor was overexpressed in the liver of E4+ mice. Plasma cholesterol levels were 33% lower after the DHA diet (P=.02) in E3+ mice only, and there was a significant diet effect where cholesterol level was 67% lower in the liver of mice fed DHA. Mice fed the DHA diet also had 62% less lipolysis stimulated lipoprotein receptor expression in the liver compared to mice fed the control diet (P<.0001), but there was no genotype effect. These findings suggest that plasma and liver cholesterol homeostasis and the receptors regulating uptake of cholesterol in the liver are modulated differently and independently by APOE allele and DHA intake

    Non-alcoholic fatty liver disease, and the underlying altered fatty acid metabolism, reveals brain hypoperfusion and contributes to the cognitive decline in APP/PS1 mice

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfalpha, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma beta40- and beta42-amyloid levels and altered hepatic but not brain expression of genes involved in beta-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD

    Implication du récepteur LSR (lipolysis stimulated lipoprotein receptor) dans le contrôle de l’homéostasie du cholestérol cérébral et les capacités cognitives au cours du vieillissement

    No full text
    Accès restreint aux membres de l'Université de Lorraine jusqu'au 2016-11-24Alzheimer's disease (AD) is a neurodegenerative disease affecting millions of people. The origin of AD is multifactorial. Studies suggest that disturbance of cholesterol metabolism contributes to AD development. However, data in the literature is conflicting. It is therefore crucial to better characterize the metabolism and involvement of cholesterol in AD. This work focused on the Lipolysis Stimulated Lipoprotein Receptor (LSR), a hepatic lipoprotein receptor involved in the clearance of lipoproteins during the postprandial phase. The objectives of this thesis were to characterize LSR receptor expression profile in the mouse brain, and to determine its role in both brain cholesterol homeostasis and in the pathophysiology of AD. We identified and characterized LSR expression in brain structures that are involved in cognitive abilities and the regulation of energy metabolism. Next, using a mouse model heterozygous for the LSR receptor, we were able to demonstrate that the deletion of one allele LSR causes impaired brain cholesterol metabolism in aging, which was correlated with increased susceptibility to amyloid stress. These results suggest a role of LSR receptor in brain cholesterol homeostasis and show that alterations of the brain cholesterol metabolism can impact AD pathophysiology. Finally, we observed that the deficiency of an LSR allele in mice on a high fat diets affected peripheral lipid metabolism and the anxiety in these miceLa maladie d'Alzheimer (MA) est une maladie neurodégénérative touchant plusieurs millions de personnes. La MA a une origine multifactorielle. Diverses études suggèrent qu'une perturbation du métabolisme du cholestérol contribue au développement de la MA. Cependant, la littérature présente beaucoup de confusion. Il est donc crucial de mieux caractériser le métabolisme et l'implication du cholestérol dans la MA. Ce travail s'est intéressé au récepteur Lipolysis Stimulated Lipoprotein Receptor (LSR) qui est un récepteur hépatique aux lipoprotéines participant à la clairance des lipides en phase post prandiale. Les objectifs de cette thèse ont été de caractériser la présence du récepteur LSR dans le cerveau de souris, de déterminer son rôle dans le contrôle de l'homéostasie du cholestérol cérébral et dans la physiopathologie de la MA. Ainsi, nous avons caractérisé la présence de LSR dans des structures cérébrales importantes pour les capacités cognitives et le métabolisme énergétique. Grâce à un modèle de souris hétérozygote pour le récepteur LSR, nous avons mis en évidence que la délétion d'un allèle LSR entraine une altération du métabolisme du cholestérol cérébral au cours du vieillissement, qui est corrélée avec une augmentation de la sensibilité au stress amyloïde. Ces résultats suggèrent un rôle du récepteur LSR dans le contrôle de l'homéostasie du cholestérol cérébral et renforcent l'idée qu'une altération de cette dernière peut impacter la physiopathologie de la MA. Enfin, nous avons observé que la déficience d'un allèle LSR chez des souris placées sous un régime hyperlipidique pouvait impacter le métabolisme lipidique périphérique ainsi que l'anxiété de ces souri

    Role of the lipoprotein receptor LSR (lipolysis stimulated lipoprotein receptor) in brain cholesterol homeostasis and cognitive abilities in aging

    No full text
    La maladie d'Alzheimer (MA) est une maladie neurodégénérative touchant plusieurs millions de personnes. La MA a une origine multifactorielle. Diverses études suggèrent qu'une perturbation du métabolisme du cholestérol contribue au développement de la MA. Cependant, la littérature présente beaucoup de confusion. Il est donc crucial de mieux caractériser le métabolisme et l'implication du cholestérol dans la MA. Ce travail s'est intéressé au récepteur Lipolysis Stimulated Lipoprotein Receptor (LSR) qui est un récepteur hépatique aux lipoprotéines participant à la clairance des lipides en phase post prandiale. Les objectifs de cette thèse ont été de caractériser la présence du récepteur LSR dans le cerveau de souris, de déterminer son rôle dans le contrôle de l'homéostasie du cholestérol cérébral et dans la physiopathologie de la MA. Ainsi, nous avons caractérisé la présence de LSR dans des structures cérébrales importantes pour les capacités cognitives et le métabolisme énergétique. Grâce à un modèle de souris hétérozygote pour le récepteur LSR, nous avons mis en évidence que la délétion d'un allèle LSR entraine une altération du métabolisme du cholestérol cérébral au cours du vieillissement, qui est corrélée avec une augmentation de la sensibilité au stress amyloïde. Ces résultats suggèrent un rôle du récepteur LSR dans le contrôle de l'homéostasie du cholestérol cérébral et renforcent l'idée qu'une altération de cette dernière peut impacter la physiopathologie de la MA. Enfin, nous avons observé que la déficience d'un allèle LSR chez des souris placées sous un régime hyperlipidique pouvait impacter le métabolisme lipidique périphérique ainsi que l'anxiété de ces sourisAlzheimer's disease (AD) is a neurodegenerative disease affecting millions of people. The origin of AD is multifactorial. Studies suggest that disturbance of cholesterol metabolism contributes to AD development. However, data in the literature is conflicting. It is therefore crucial to better characterize the metabolism and involvement of cholesterol in AD. This work focused on the Lipolysis Stimulated Lipoprotein Receptor (LSR), a hepatic lipoprotein receptor involved in the clearance of lipoproteins during the postprandial phase. The objectives of this thesis were to characterize LSR receptor expression profile in the mouse brain, and to determine its role in both brain cholesterol homeostasis and in the pathophysiology of AD. We identified and characterized LSR expression in brain structures that are involved in cognitive abilities and the regulation of energy metabolism. Next, using a mouse model heterozygous for the LSR receptor, we were able to demonstrate that the deletion of one allele LSR causes impaired brain cholesterol metabolism in aging, which was correlated with increased susceptibility to amyloid stress. These results suggest a role of LSR receptor in brain cholesterol homeostasis and show that alterations of the brain cholesterol metabolism can impact AD pathophysiology. Finally, we observed that the deficiency of an LSR allele in mice on a high fat diets affected peripheral lipid metabolism and the anxiety in these mic

    Expression profile of hepatic genes related to lipid homeostasis in LSR heterozygous mice contributes to their increased response to high-fat diet

    No full text
    Perturbations of lipid homeostasis manifest as dyslipidemias and obesity, which are significant risk factors for atherosclerosis and diabetes.Lipoprotein receptors in the liver are key players in the regulation of lipid homeostasis, among which the hepatic lipolysis stimulated lipoprotein receptor, LSR, was recently shown to play an important role in the removal of lipoproteins from the circulation during the postprandial phase. Since heterozygous LSR+/- mice demonstrate moderate dyslipidemia and develop higher body weight gain in response to high-fat diet compared with littermate LSR+/+ controls, we questioned if LSR heterozygosity could affect genes related to hepatic lipid metabolism.A target-specific qPCR array for 84 genes related to lipid metabolism was performed on mRNA isolated from livers of 6 mo old female LSR+/- mice and LSR+/+ littermates following a 6 wk period on a standard (STD) or high-fat diet (60% kcal, HFD). Of the 84 genes studied, 32 were significantly downregulated in STD-LSR+/- mice compared with STD-LSR+/+, a majority of which were PPARα target genes involved in lipid metabolism and transport, and insulin and adipokine-signaling pathways. Of these 32 genes, 80% were also modified in HFD-LSR+/+, suggesting that STD-LSR+/- mice demonstrated a predisposition towards a "high-fat"-like profile, which could reflect dysregulation of liver lipid homeostasis.Since similar profiles of genes were affected by either LSR heterozygosity or by high-fat diet, this would suggest that LSR is a key receptor in regulating hepatic lipid homeostasis, and whose downregulation combined with a Western-type diet may increase predisposition to diet-induced obesity

    Globalizing forms of elite sociability: varieties of cosmopolitanism in Paris social clubs

    No full text
    This article examines the cultivation of transnational connections, cosmopolitanism and global class consciousness among members of elite social clubs in Paris. Drawing from interviews with members, it compares how - according to their respective characteristics - various social clubs promote different kinds of bourgeois cosmopolitanism, while rejecting the more recent internationalism of upper-middle-class service clubs such as the Rotary. Each club's peculiar ethos, practice and representations of social capital are related to the features of competing clubs through relations of mutual symbolic distinction; for example, some clubs emphasize the ‘genuineness’ of links while stigmatizing others for the accent they put on utility. The varied forms of cosmopolitanism that they promote partly replicate these logics of distinction, eliciting struggles over the authenticity or inauthenticity of transnational connections. Yet, clubs also oppose each other according to the unequal emphasis that they place on international ties per se, which creates a competing axiology within the symbolic economy of social capital accumulation

    Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments.

    No full text
    Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents
    corecore