387 research outputs found

    INITIAL GROWTH OF Amburana cearensis (Allem.) A. C. Smith IN AN AGROFORESTRY SYSTEM IN THE BRAZILIAN SEMIARID

    Get PDF
    O cumaru ( Amburana cearensis (Allem.) A. C. Smith) \ue9 uma esp\ue9cie nativa do semi\ue1rido brasileiro que apresenta m\ufaltiplas utilidades como madeira de boa qualidade e cont\ue9m princ\uedpio ativo que pode ser utilizado nas ind\ufastrias aliment\uedcias, de perfume e na produ\ue7\ue3o de medicamentos. \uc9, tamb\ue9m, planta forrageira e mel\uedfera. As respostas do cumaru \ue0 aduba\ue7\ue3o org\ue2nica e cobertura morta do solo, insumos oriundos e ciclados dentro do pr\uf3prio agroecossistema, s\ue3o ainda pouco conhecidas. Para isto, um experimento foi montado visando estudar o comportamento das mudas em um sistema agroflorestal (em cons\uf3rcio com milho e feij\ue3o), testando-se diferentes n\uedveis de mat\ue9ria org\ue2nica (0, 15 e 30 L de esterco na cova), com e sem cobertura morta no solo. Avaliou-se a altura de plantas, di\ue2metro caulinar, n\ufamero de folhas, \ue1rea foliar e sobreviv\ueancia das plantas no campo ap\uf3s um ano de plantio. O cumaru, no sistema agroflorestal estudado, mostrou-se indiferente ao uso de cobertura morta e adaptado \ue0s condi\ue7\uf5es de baixa mat\ue9ria org\ue2nica no solo, obtendo-se o maior crescimento na aus\ueancia de mat\ue9ria org\ue2nica (esterco).Amburana cearensis (Allem.) A. C. Smith is a Brazilian semiarid region native plant. It presents good quality wood, contains an active ingredient that can be used for food, perfume and medicine production and it is also a forage and a melifera plant. The responses of the studied species to organic fertilizer and mulch, inputs produced and cycled within its ecosystem are still unknown. For this, an experiment was conducted to study the behavior of seedlings in an agroforestry system intercropped with maize and beans, testing different levels of organic matter (0, 15 and 30 L of manure) with and without soil mulch. It was evaluated the plant height, stem diameter, leaf number, leaf area and the survival of plants in the field one year after planting. The performance of A. cearensis was indifferent to the use of mulch and well adapted to low soil organic matter conditions, obtaining the largest growth in the absence of organic matter

    Biorefinery Done Right

    Full text link
    Following the COP21 conference in Paris, most of the world’s industrialized countries, as well as emerging markets, pledged to reduce or stabilize their greenhouse gas (GHG) emissions in light of increasing concerns regarding climate change [1]. The necessity to decrease GHG emissions will have implications on the consumption patterns of different types of energies around the world. Apart from the obvious need to replace part of the increasing fossil fuel consumption in transportation (including road, rail, air and sea), there is a growing demand in other sectors as well, such as for electricity production, heating and cooling. Many opportunities are being investigated to address some of the issues related to this green energy transition, including the increased harnessing of alternative energy sources such as wind, solar, hydro, geothermal and biomass. Despite varying potential for each of the mentioned energy sources to help replace or supplement fossil fuels, only biomass currently has the potential to address most of these needs without requiring significant changes to existing energy distribution networks. For example, biomass can be burnt to generate combined heat and power, but it can also be used as a source of carbon to produce biofuels. In the latter case, biofuels such as ethanol could be blended into the existing fuel pool as well as distributed and utilized in engines without requiring significant modifications to the existing chain of distribution. This adaptiveness is not necessarily the case when considering electric vehicles (EV), although they are also of crucial importance towards collectively reducing GHG emissions. This manuscript will review the Biorefinery Done Right-concept, developed by the company RéSolve Énergie in close collaboration with the Biomass Technology Laboratory. This simple feedstock-agnostic technology allows conversion of any type of residual biomass (including but not limited to softwood bark) to three-types of biofuels. The first objective is to take advantage of the carbohydrate content in the biomass through hydrolysis of the constitutive hemicellulose and cellulose. The fermentable sugars are then converted to ethanol, achieved without any constraints, since the RéSolve process generates a hydrolysate with very low inhibitor levels. The lignin recovered from the process is essentially unmodified lignin and after washing, it is pelletized. Pellets, containing the most energetic components of the lignocellulosic biomass, can provide up to 26 GJ/tonne. Finally, the non-fermentable sugars (C5), as well as the lignin that does not comply with Grade A lignin characteristics, are predigested for utilization in a classical biomethanation system. Hence, through this approach, 100% of the carbon from the biomass is converted into commercial products, which at this point are all related to the energy market.The authors would like to acknowledge the participation of RéSolve Énergie to this project as well as the CRIBIQ, MITACS and NSERC who contributed in funding this work

    Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies

    Get PDF
    Various methods are available for assessing uncertainties in climate impact studies. Among such methods, model weighting by expert elicitation is a practical way to provide a weighted ensemble of models for specific real-world impacts. The aim is to decrease the influence of improbable models in the results and easing the decision-making process. In this study both climate and hydrological models are analysed, and the result of a research experiment is presented using model weighting with the participation of six climate model experts and six hydrological model experts. For the experiment, seven climate models are a priori selected from a larger EURO-CORDEX (Coordinated Regional Downscaling Experiment - European Domain) ensemble of climate models, and three different hydrological models are chosen for each of the three European river basins. The model weighting is based on qualitative evaluation by the experts for each of the selected models based on a training material that describes the overall model structure and literature about climate models and the performance of hydrological models for the present period. The expert elicitation process follows a three-stage approach, with two individual rounds of elicitation of probabilities and a final group consensus, where the experts are separated into two different community groups: a climate and a hydrological modeller group. The dialogue reveals that under the conditions of the study, most climate modellers prefer the equal weighting of ensemble members, whereas hydrological-impact modellers in general are more open for assigning weights to different models in a multi-model ensemble, based on model performance and model structure. Climate experts are more open to exclude models, if obviously flawed, than to put weights on selected models in a relatively small ensemble. The study shows that expert elicitation can be an efficient way to assign weights to different hydrological models and thereby reduce the uncertainty in climate impact. However, for the climate model ensemble, comprising seven models, the elicitation in the format of this study could only re-establish a uniform weight between climate models

    Avicin D, a Plant Triterpenoid, Induces Cell Apoptosis by Recruitment of Fas and Downstream Signaling Molecules into Lipid Rafts

    Get PDF
    Avicins, a family of triterpene electrophiles originally identified as potent inhibitors of tumor cell growth, have been shown to be pleiotropic compounds that also possess antioxidant, anti-mutagenic, and anti-inflammatory activities. We previously showed that Jurkat cells, which express a high level of Fas, are very sensitive to treatment with avicins. Thus, we hypothesized that avicins may induce cell apoptosis by activation of the Fas pathway. By using a series of cell lines deficient in cell death receptors, we demonstrated that upon avicin D treatment, Fas translocates to the cholesterol- and sphingolipid-enriched membrane microdomains known as lipid rafts. In the lipid rafts, Fas interacts with Fas-associated death domain (FADD) and Caspase-8 to form death-inducing signaling complex (DISC) and thus mediates cell apoptosis. Interfering with lipid raft organization by using a cholesterol-depleting compound, methyl-β-cyclodextrin, not only prevents the clustering of Fas and its DISC complex but also reduces the sensitivity of the cells to avicin D. Avicin D activates Fas pathways independent of the association between extracellular Fas ligands and Fas receptors. A deficiency in Fas and its downstream signaling molecules leads to the resistance of the cells to avicin D treatment. Taken together, our results demonstrate that avicin D triggers the redistribution of Fas in the membrane lipid rafts, where Fas activates receptor-mediated cell death

    Who Eats Whom in a Pool? A Comparative Study of Prey Selectivity by Predatory Aquatic Insects

    Get PDF
    Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny

    Detection and identification of Xanthomonas pathotypes associated with citrus diseases using comparative genomics and multiplex PCR.

    Get PDF
    Background. In Citrus cultures, three species of Xanthomonas are known to cause distinct diseases. X. citri subsp. citri patothype A, X. fuscans subsp. aurantifolii pathotypes B and C, and X. alfalfae subsp. citrumelonis, are the causative agents of cancrosis A, B, C, and citrus bacterial spots, respectively. Although these species exhibit different levels of virulence and aggressiveness, only limited alternatives are currently available for proper and early detection of these diseases in the fields. The present study aimed to develop a new molecular diagnostic method based on genomic sequences derived from the four species of Xanthomonas. Results. Using comparative genomics approaches, primers were synthesized for the identification of the four causative agents of citrus diseases. These primers were validated for their specificity to their target DNA by both conventional and multiplex PCR. Upon evaluation, their sensitivity was found to be 0.02 ng/?l in vitro and 1.5 ? 104 CFU ml?1 in infected leaves. Additionally, none of the primers were able to generate amplicons in 19 other genomes of Xanthomonas not associated with Citrus and one species of Xylella, the causal agent of citrus variegated chlorosis (CVC). This denotes strong specificity of the primers for the different species of Xanthomonas investigated in this study. Conclusions. We demonstrated that these markers can be used as potential candidates for performing in vivo molecular diagnosis exclusively for citrus-associated Xanthomonas. The bioinformatics pipeline developed in this study to design specific genomic regions is capable of generating specific primers. It is freely available and can be utilized for any other model organism

    A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System

    Get PDF
    The global agriculture, aquaculture, fishing and forestry (AAFF) energy system is subject to three unsustainable trends: (1) the approaching biophysical limits of AAFF; (2) the role of AAFF as a driver of environmental degradation; and (3) the long-term declining energy efficiency of AAFF due to growing dependence on fossil fuels. In response, we conduct a net energy analysis for the period 1971–2017 and review existing studies to investigate the global AAFF energy system and its vulnerability to the three unsustainable trends from an energetic perspective. We estimate the global AAFF system represents 27.9% of societies energy supply in 2017, with food energy representing 20.8% of societies total energy supply. We find that the net energy-return-on-investment (net EROI) of global AAFF increased from 2.87:1 in 1971 to 4.05:1 in 2017. We suggest that rising net EROI values are being fuelled in part by ‘depleting natures accumulated energy stocks’. We also find that the net energy balance of AAFF increased by 130% in this period, with at the same time a decrease in both the proportion of rural residents and also the proportion of the total population working in AAFF—which decreased from 19.8 to 10.3%. However, this comes at the cost of growing fossil fuel dependency which increased from 43.6 to 62.2%. Given the increasing probability of near-term fossil fuel scarcity, the growing impacts of climate change and environmental degradation, and the approaching biophysical limits of global AAFF, ‘Odum’s hoax’ is likely soon to be revealed
    corecore