461 research outputs found

    The Holbrook Meteorite - 99 Years Out in the Weather

    Get PDF
    At 7:15pm on the evening of 19th July 1912, a bright fireball appeared in the sky above Navajo County, Arizona [1]. After several loud detonations, approximately 16,000 mostly pea-sized stones fell near the Arntz siding of the Santa Fe Railroad, 7 miles from the town of Holbrook. A search orchestrated by W.M.Foote resulted in nearly 220 kg of material being recovered; samples were exchanged with a great many of the World's Museums [2]. In 1931 Harvey Nininger revisited the site and was able to find another 23 kg that had originally been missed [3]. One of us (EKG) returned again in 1968 and found a further ca 1.5 kg specimen [4]. Meteorite hunters have been going back to Holbrook ever since in the hope of more finds. For example in 2001 a group of 45 searchers accumulated 440 g of previously overlooked L6 group meteorite fragments. In 2011, the 99th anniversary of the event, Rubin Garcia located 11 mini-meteorites [5]

    The carbon and nitrogen stable isotope geochemistry of two lunar meteorites: ALHA-81005 and Y-86032

    Get PDF
    The carbon and nitrogen stable isotope geochemistry of two lunar meteorites, ALHA-81005 and Y-86032 has been compared with that of an Apollo 16 regolith breccia, 60016. Although much of the carbon present in all three samples is terrestrial organic contamination, the meteorites have higher carbon abundances and lighter isotopic compositions than 60016. The non-contaminant carbon in ALHA-81005 and Y-86032 occurs as two distinct components, combusting between 550-700℃ and 900-1100℃. Since these components are absent from the pristine lunar breccia, they must have been added (i) from the impactor which ejected the meteorites from the Moon; (ii) in the Antarctic or (iii) be representative of a lunar environment not sampled by Apollo missions. At temperatures over 1100℃, spallogenic carbon combusts, with elevated δ^C, greater than 0‰. Nitrogen systematics are less-well resolved than carbon, partly due to the lower amounts of nitrogen gas liberated by the meteorites. Nitrogen abundance of ALHA-81005 and Y-86032 fall in the range of values from lunar breccias and δ^N values follow the heavy-light-heavy pattern characteristic of such samples. Spallogenic carbon and nitrogen are more abundant in ALHA-81005 than Y-86032,in keeping with its longer exposure age. Nitrogen data are consistent with identification of ALHA-81005 and Y-86032 as lunar highland breccias compacted from immature regolithic material

    Playing politics: the World Health Organization’s response to COVID-19

    Get PDF
    The challenges of the World Health Organization (WHO) begin, perhaps, with its name—framed as one organization, spanning the globe, and tasked with securing, as defined by article 1 of its constitution, “the attainment by all peoples of the highest possible level of health” (WHO, 1946). Yet the gap between the expectations of WHO and how global political actors have shaped its structure and its capacities is vast—never more so than during the COVID-19 pandemic. It is necessary to look at WHO from at least two perspectives: (1) its role as a scientific, technical, and humanitarian organization and (2) as an international organization and venue for international political negotiation, diplomacy, and policy-making. These two different, at times conflicting, missions leave WHO in a precarious position and have opened it to criticism over the years (Siddiqi, 1995). Some argue that WHO’s importance stems primarily from its political and agenda-setting functions, whereas others argue the technical information-gathering, standard-setting, and cooperation-related activities are paramount and that the agency’s political nature detracts from these activities (Clift, 2014; Jamison et al., 1998; Retreat, 1996; Ruger & Yach, 2009). There have even been calls over the years to split these functions (Hoffman & Røttingen, 2014)

    Euromet Ureilite Consortium: A preliminary report on carbon and nitrogen geochemistry

    Get PDF
    The first Euromet expedition to the Frontier Mountain in Antarctica in December 1990 recovered two ureilites, FRO 90036 (34.6g) and FRO 90054 (17.5g). Preliminary classification indicated that the specimens had very different textures and mineral chemistries, and hence were not paired. A third ureilite, Acfer 277 (41.0 g), has also recently been returned from the Sahara. Due to the small sample sizes of the meteorites, and the unusual mineralogy of FRO 90054, a consortium was established to ensure the most effective study of these samples; this abstract reports on the carbon and nitrogen stable isotope geochemistry of two of the three ureilites issued to the consortium

    Carbonates, surfates, phosphates, nitrates, and organic materials: Their association in a Martian meteorite

    Get PDF
    The debate concerning the evolution of CO2 on Mars continues. It would appear that in order to explain the valley networks and other relict fluvial landforms it is necessary to accept that liquid water was once present at the surface of Mars. This in turn requires, at some point in the planet's history, a higher surface temperature than exists today, proposition explained traditionally by an early dense CO2, atmosphere. However, there are a number of problems with this notion: for instance, CO2 alone is not an efficient greenhouse gas because of its tendency to form clouds. Moreover, if there was an early dense CO2 atmosphere, it is necessary to explain where the elemental constituents now reside. There are two possibilities for the latter, namely loss to outer space of atmospheric CO2 or the formation of vast carbonate deposits. While some models of atmospheric loss predict that up to 0.4 bar of CO2 could be removed from the Martian surface, this is still not enough to account for the original atmospheric inventory, usually considered to have been in the range of 1-5 bar. Thus, most models of the evolution of the Martian surface require removal of CO2 from the atmosphere and into carbonate deposits. However, as yet, the evidence for the existence of carbonates on Mars is fairly scant. This is an issue that would have been resolved by results obtained from Mars Observer
    corecore