19 research outputs found

    Fragmentation of the High-mass "Starless'' Core G10.21-0.31: a Coherent Evolutionary Picture for Star Formation

    Full text link
    G10.21-0.31 is a 70 μ\mum-dark high-mass starless core (M>300M>300 M\mathrm{M_{\odot}} within r<0.15r<0.15 pc) identified in SpitzerSpitzer, HerschelHerschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present ALMA and SMA observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging 11-18 M\mathrm{M_{\odot}}, characterized by a turbulent fragmentation. Core 1, 2, and 3 represent a coherent evolution at three different evolutionary stages, characterized by outflows (CO, SiO), gas temperature (H2CO\mathrm{H_2CO}), and deuteration (N2D+/N2H+\mathrm{N_2D^+/N_2H^+}). We confirm the potential to form high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time.Comment: 30 pages, 13 figures; accepted for publication in Ap

    The role of turbulence in high-mass star formation: Subsonic and transonic turbulence are ubiquitously found at early stages

    Get PDF
    [Context] Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions.[Aims] Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width.[Methods] We observed NH3 metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence.[Results] Analysis of the turbulence distribution histogram for 32 identified NH3 cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub- and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution.We acknowledge support from the National Science Foundation of China (11973013, 12033005), the China Manned Space Project (CMS-CSST-2021-A09), the National Key Research and Development Program of China (2022YFA1603102, 2019YFA0405100), and the High-Performance Computing Platform of Peking University. PS was partially supported by a Grant-in-Aid for Scientific Research (KAKENHI Number JP22H01271 and JP23H01221) of JSPS. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. D.L. is supported by NSFC grant No. 11988101. F.W.X. acknowledges the support by NSFC through grant no. 12033005. H.B.L. is supported by the National Science and Technology Council (NSTC) of Taiwan (Grant Nos. 111-2112-M-110-022-MY3). G.B. acknowledges support from the PID2020-117710GB-I00 grant funded by MCIN/ AEI /10.13039/501100011033.Peer reviewe

    The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone

    Get PDF
    The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at 0.9\sim 0.9 pc spatial and 2.0\sim 2.0 km s1^{-1} spectral resolution. In this paper, we present data on the inner 250\sim 250 pc (1.41.4^\circ) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of 8168-16 km s1^{-1} and extended regions of optically thick (τ>1\tau > 1) emission. Two components in kinetic temperature are detected at 255025-50 K and 6010060-100 K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between 50\sim 50 and 100\sim 100 K Myr1^{-1} along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase

    The Molecular Gas Environment in the 20 KMS−1 Cloud in the Central Molecular Zone

    Get PDF
    We recently reported a population of protostellar candidates in the 20 kms−1 cloud in the Central Molecular Zone of the Milky Way, traced by H2O masers in gravitationally bound dense cores. In this paper, we report high-angular-resolution (_3′′) molecular line studies of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1.3 mm are obtained using the Submillimeter Array. Five NH3 inversion lines and the 1.3 cm continuum are observed with the Karl G. Jansky Very Large Array. The interferometric observations are complemented with single-dish data. We find that the CH3OH, SO, and HNCO lines, which are usually shock tracers, are better correlated spatially with the compact dust emission from dense cores among the detected lines. These lines also show enhancement in intensities with respect to SiO intensities toward the compact dust emission, suggesting the presence of slow shocks or hot cores in these regions. We find gas temperatures of &100 K at 0.1-pc scales based on RADEX modelling of the H2CO and NH3 lines. Although no strong correlations between temperatures and linewidths/H2O maser luminosities are found, in high-angular-resolution maps we notice several candidate shock heated regions offset from any dense cores, as well as signatures of localized heating by protostars in several dense cores. Our findings suggest that at 0.1-pc scales in this cloud star formation and strong turbulence may together affect the chemistry and temperature of the molecular gas

    The JWST Galactic Center Survey -- A White Paper

    Full text link
    The inner hundred parsecs of the Milky Way hosts the nearest supermassive black hole, largest reservoir of dense gas, greatest stellar density, hundreds of massive main and post main sequence stars, and the highest volume density of supernovae in the Galaxy. As the nearest environment in which it is possible to simultaneously observe many of the extreme processes shaping the Universe, it is one of the most well-studied regions in astrophysics. Due to its proximity, we can study the center of our Galaxy on scales down to a few hundred AU, a hundred times better than in similar Local Group galaxies and thousands of times better than in the nearest active galaxies. The Galactic Center (GC) is therefore of outstanding astrophysical interest. However, in spite of intense observational work over the past decades, there are still fundamental things unknown about the GC. JWST has the unique capability to provide us with the necessary, game-changing data. In this White Paper, we advocate for a JWST NIRCam survey that aims at solving central questions, that we have identified as a community: i) the 3D structure and kinematics of gas and stars; ii) ancient star formation and its relation with the overall history of the Milky Way, as well as recent star formation and its implications for the overall energetics of our galaxy's nucleus; and iii) the (non-)universality of star formation and the stellar initial mass function. We advocate for a large-area, multi-epoch, multi-wavelength NIRCam survey of the inner 100\,pc of the Galaxy in the form of a Treasury GO JWST Large Program that is open to the community. We describe how this survey will derive the physical and kinematic properties of ~10,000,000 stars, how this will solve the key unknowns and provide a valuable resource for the community with long-lasting legacy value.Comment: This White Paper will be updated when required (e.g. new authors joining, editing of content). Most recent update: 24 Oct 202

    Living on the edge of the Milky Way's central molecular zone

    No full text
    Context. The 1°.3 (G1.3) and 1°.6 (G1.6) cloud complexes in the central molecular zone (CMZ) of our Galaxy have been proposed to possibly reside at the intersection region of the X1 and X2 orbits for several reasons. This includes the detection of co-spatial low- and high-velocity clouds, high velocity dispersion, high fractional molecular abundances of shock-tracing molecules, and kinetic temperatures that are higher than for usual CMZ clouds. Aims. By investigating the morphology and deriving physical properties as well as chemical composition, we want to find the origin of the turbulent gas and, in particular, whether evidence of an interaction between clouds can be identified. Methods. We mapped both cloud complexes in molecular lines in the frequency range from 85 to 117 GHz with the IRAM 30 m telescope. The APEX 12m telescope was used to observe higher frequency transitions between 210 and 475 GHz from selected molecules that are emitted from higher energy levels. We performed non-local thermodynamic equilibrium (non-LTE) modelling of the emission of an ensemble of CH3CN lines to derive kinetic temperatures and H2 volume densities. These were used as starting points for non-LTE modelling of other molecules, for which column densities and abundances were determined and compared with values found for other sources in the CMZ. Results. The kinematic structure of G1.3 reveals an ‘emission bridge’ at intermediate velocities (~150 km s−1) connecting low-velocity (~100 km s−1) and high-velocity (~180 km s−1) gas and an overall fluffy shell-like structure. These may represent observational evidence of cloud-cloud interactions. Low- and high-velocity gas components in G1.6 do not show this type of evidence of an interaction, suggesting that they are spatially separated. We selected three positions in each cloud complex for further analysis. Each position reveals several gas components at various peak velocities and of various line widths. We derived kinetic temperatures of 60–100 K and H2 volume densities of 104–105 cm−3 in both complexes. Molecular abundances relative to H2 suggest a similar chemistry of the two clouds, which is moreover similar to that of other GC clouds and, especially, agrees well with that of G+0.693 and G−0.11. Conclusions. We conclude that G1.3 may indeed exhibit signs of cloud-cloud interactions. In particular, we propose an interaction of gas that is accreted from the near-side dust lane to the CMZ, with gas pre-existing at this location. Low- and high-velocity components in G1.6 are rather coincidentally observed along the same line of sight. They may be associated with either overshot decelerated gas from the far-side dust line or actual CMZ gas and high-velocity gas moving on a dust lane. These scenarios would be in agreement with numerical simulations

    Binary Formation in a 100 μm Dark Massive Core

    No full text
    We report high-resolution ALMA observations toward a massive protostellar core C1-Sa (∼30 M _⊙ ) in the Dragon infrared dark cloud. At the resolution of 140 au, the core fragments into two kernels (C1-Sa1 and C1-Sa2) with a projected separation of ∼1400 au along the elongation of C1-Sa, consistent with a Jeans length scale of ∼1100 au. Radiative transfer modeling using RADEX indicates that the protostellar kernel C1-Sa1 has a temperature of ∼75 K and a mass of 0.55 M _⊙ . C1-Sa1 also likely drives two bipolar outflows, one being parallel to the plane of the sky. C1-Sa2 is not detected in line emission and does not show any outflow activity but exhibits ortho-H _2 D ^+ and N _2 D ^+ emission in its vicinity; thus it is likely still starless. Assuming a 20 K temperature, C1-Sa2 has a mass of 1.6 M _⊙ . At a higher resolution of 96 au, C1-Sa1 begins to show an irregular shape at the periphery, but no clear sign of multiple objects or disks. We suspect that C1-Sa1 hosts a tight binary with inclined disks and outflows. Currently, one member of the binary is actively accreting while the accretion in the other is significantly reduced. C1-Sa2 shows hints of fragmentation into two subkernels with similar masses, which requires further confirmation with higher sensitivity

    Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South

    No full text
    Far-infrared polarimetric observations reveal a transition parallel to the gas flow in the orientation of magnetic field lines in the Serpens South molecular cloud, allowing gravitational collapse to occur even in the presence of strong magnetic fields. Observations indicate that molecular clouds are strongly magnetized, and that magnetic fields influence the formation of stars. A key observation supporting the conclusion that molecular clouds are significantly magnetized is that the orientation of their internal structure is closely related to that of the magnetic field. At low column densities, the structure aligns parallel with the field, whereas at higher column densities, the gas structure is typically oriented perpendicular to magnetic fields, with a transition at visual extinctionsA(V) greater than or similar to 3 mag. Here we use far-infrared polarimetric observations from the HAWC+ polarimeter on SOFIA to report the discovery of a further transition in relative orientation, that is, a return to parallel alignment atA(V) greater than or similar to 21 mag in parts of the Serpens South cloud. This transition appears to be caused by gas flow and indicates that magnetic supercriticality sets in nearA(V) greater than or similar to 21 mag, allowing gravitational collapse and star cluster formation to occur even in the presence of relatively strong magnetic fields
    corecore