57 research outputs found

    A Population-Based Descriptive Atlas of Invasive Pneumococcal Strains Recovered Within the U.S. During 2015–2016

    Get PDF
    Invasive pneumococcal disease (IPD) has greatly decreased since implementation in the U.S. of the 7 valent conjugate vaccine (PCV7) in 2000 and 13 valent conjugate vaccine (PCV13) in 2010. We used whole genome sequencing (WGS) to predict phenotypic traits (serotypes, antimicrobial phenotypes, and pilus determinants) and determine multilocus genotypes from 5334 isolates (~90% of cases) recovered during 2015–2016 through Active Bacterial Core surveillance. We identified 44 serotypes; 26 accounted for 98% of the isolates. PCV13 serotypes (inclusive of serotype 6C) accounted for 1503 (28.2%) isolates, with serotype 3 most common (657/5334, 12.3%), while serotypes 1 and 5 were undetected. Of 305 isolates from children <5 yrs, 60 (19.7%) were of PCV13 serotypes 19A, 19F, 3, 6B, and 23F (58/60 were 19A, 19F, or 3). We quantitated MLST-based lineages first detected during the post-PCV era (since 2002) that potentially arose through serotype-switching. The 7 predominant emergent post-PCV strain complexes included 23B/CC338, 15BC/CC3280, 19A/CC244, 4/CC439, 15A/CC156, 35B/CC156, and 15BC/CC156. These strains accounted for 332 isolates (6.2% of total) and were more frequently observed in children <5 yrs (17.7%; 54/305). Fifty-seven categories of recently emerged (in the post PCV7 period) putative serotype-switch variants were identified, accounting for 402 isolates. Many of these putative switch variants represented newly emerged resistant strains. Penicillin-nonsusceptibility (MICs > 0.12 μg/ml) was found among 22.4% (1193/5334) isolates, with higher penicillin MICs (2–8 μg/ml) found in 8.0% (425/5334) of isolates that were primarily (372/425, 87.5%) serotypes 35B and 19A. Most (792/1193, 66.4%) penicillin-nonsusceptible isolates were macrolide-resistant, 410 (34.4%) of which were erm gene positive and clindamycin-resistant. The proportion of macrolide-resistant isolates increased with increasing penicillin MICs; even isolates with reduced penicillin susceptibility (MIC = 0.06 μg/ml) were much more likely to be macrolide-resistant than basally penicillin-susceptible isolates (MIC < 0.03 μg/ml). The contribution of recombination to strain diversification was assessed through quantitating 35B/CC558-specific bioinformatic pipeline features among non-CC558 CCs and determining the sizes of gene replacements. Although IPD has decreased greatly and stabilized in the post-PCV13 era, the species continually generates recombinants that adapt to selective pressures exerted by vaccines and antimicrobials. These data serve as a baseline for monitoring future changes within each invasive serotype

    Effectiveness of a Messenger RNA Vaccine Booster Dose Against Coronavirus Disease 2019 Among US Healthcare Personnel, October 2021-July 2022

    Get PDF
    BACKGROUND: Protection against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019 [COVID-19]) can limit transmission and the risk of post-COVID conditions, and is particularly important among healthcare personnel. However, lower vaccine effectiveness (VE) has been reported since predominance of the Omicron SARS-CoV-2 variant. METHODS: We evaluated the VE of a monovalent messenger RNA (mRNA) booster dose against COVID-19 from October 2021 to June 2022 among US healthcare personnel. After matching case-participants with COVID-19 to control-participants by 2-week period and site, we used conditional logistic regression to estimate the VE of a booster dose compared with completing only 2 mRNA doses \u3e150 days previously, adjusted for multiple covariates. RESULTS: Among 3279 case-participants and 3998 control-participants who had completed 2 mRNA doses, we estimated that the VE of a booster dose against COVID-19 declined from 86% (95% confidence interval, 81%-90%) during Delta predominance to 65% (58%-70%) during Omicron predominance. During Omicron predominance, VE declined from 73% (95% confidence interval, 67%-79%) 14-60 days after the booster dose, to 32% (4%-52%) ≥120 days after a booster dose. We found that VE was similar by age group, presence of underlying health conditions, and pregnancy status on the test date, as well as among immunocompromised participants. CONCLUSIONS: A booster dose conferred substantial protection against COVID-19 among healthcare personnel. However, VE was lower during Omicron predominance, and waning effectiveness was observed 4 months after booster dose receipt during this period. Our findings support recommendations to stay up to date on recommended doses of COVID-19 vaccines for all those eligible

    Changes in Invasive Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1 following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project

    Get PDF
    Streptococcus pneumoniae serotype 1 (ST1) was an important cause of invasive pneumococcal disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) containing ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project gathered ST1 IPD surveillance data from sites globally and aimed to estimate PCV10/13 impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-effects Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). Following PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After six years of PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04-0.06) for all ages, 0.05 (0.04-0.05) for <5 years of age, 0.08 (0.06-0.09) for 5-17 years, 0.06 (0.05-0.08) for 18-49 years, 0.06 (0.05-0.07) for 50-64 years, and 0.05 (0.04-0.06) for ≥65 years. PCV10/13 use in infant immunization programs was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 years. Limited data availability from the highest ST1 disease burden countries using a 3+0 schedule constrains generalizability and data from these settings are needed

    Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project.

    Get PDF
    Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon

    Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel

    No full text
    BACKGROUND: The prioritization of U.S. health care personnel for early receipt of messenger RNA (mRNA) vaccines against severe acute respiratory disease coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), allowed for the evaluation of the effectiveness of these new vaccines in a real-world setting. METHODS: We conducted a test-negative case-control study involving health care personnel across 25 U.S. states. Cases were defined on the basis of a positive polymerase-chain-reaction (PCR) or antigen-based test for SARS-CoV-2 and at least one Covid-19-like symptom. Controls were defined on the basis of a negative PCR test for SARS-CoV-2, regardless of symptoms, and were matched to cases according to the week of the test date and site. Using conditional logistic regression with adjustment for age, race and ethnic group, underlying conditions, and exposures to persons with Covid-19, we estimated vaccine effectiveness for partial vaccination (assessed 14 days after receipt of the first dose through 6 days after receipt of the second dose) and complete vaccination (assessed \u3e /=7 days after receipt of the second dose). RESULTS: The study included 1482 case participants and 3449 control participants. Vaccine effectiveness for partial vaccination was 77.6% (95% confidence interval [CI], 70.9 to 82.7) with the BNT162b2 vaccine (Pfizer-BioNTech) and 88.9% (95% CI, 78.7 to 94.2) with the mRNA-1273 vaccine (Moderna); for complete vaccination, vaccine effectiveness was 88.8% (95% CI, 84.6 to 91.8) and 96.3% (95% CI, 91.3 to 98.4), respectively. Vaccine effectiveness was similar in subgroups defined according to age ( \u3c 50 years or \u3e /=50 years), race and ethnic group, presence of underlying conditions, and level of patient contact. Estimates of vaccine effectiveness were lower during weeks 9 through 14 than during weeks 3 through 8 after receipt of the second dose, but confidence intervals overlapped widely. CONCLUSIONS: The BNT162b2 and mRNA-1273 vaccines were highly effective under real-world conditions in preventing symptomatic Covid-19 in health care personnel, including those at risk for severe Covid-19 and those in racial and ethnic groups that have been disproportionately affected by the pandemic. (Funded by the Centers for Disease Control and Prevention.)

    Cost-effectiveness of implementing 13-valent pneumococcal conjugate vaccine for U.S. adults aged 19 years and older with underlying conditions

    No full text
    In June 2019, the Advisory Committee on Immunization Practices (ACIP) changed the recommendation for routine 13-valent pneumococcal conjugate vaccine (PCV13) use in immunocompetent adults aged ≥65 years, including those with select chronic medical conditions (CMC). ACIP now recommends PCV13 for this group of adults based on shared clinical decision-making. Because adults with CMC continue to be at increased risk for pneumococcal disease, we assessed the cost-effectiveness of administering PCV13 in series with the recommended 23-valent pneumococcal polysaccharide vaccine (PPSV23) for adults aged ≥19 years with CMC. We used a probabilistic model following a cohort of 19-year-old adults. We used Monte Carlo simulation to estimate the impact on program, medical, and non-medical costs (in 2017 U.S. dollars [],societalperspective),andpneumococcaldiseaseburdenwhenadministeringPCV13inserieswithPPSV23.WeusedPCV13efficacyandpost−licensurevaccineeffectiveness(VE)datatoestimateVEagainstPCV13typedisease(separatelyfordiseasebyserotype3[ST3],themostcommonPCV13type,andallotherPCV13serotypes).Weconsideredarangeofestimatesforsensitivityanalyses.Analyseswereperformedin2019.Inthebasecase,assumingnoPCV13effectivenessagainstST3disease,addingadoseofPCV13uponCMCdiagnosiscost], societal perspective), and pneumococcal disease burden when administering PCV13 in series with PPSV23. We used PCV13 efficacy and post-licensure vaccine effectiveness (VE) data to estimate VE against PCV13 type disease (separately for disease by serotype 3 [ST3], the most common PCV13 type, and all other PCV13 serotypes). We considered a range of estimates for sensitivity analyses. Analyses were performed in 2019. In the base case, assuming no PCV13 effectiveness against ST3 disease, adding a dose of PCV13 upon CMC diagnosis cost 689,299 per QALY gained. This declined to $79,416 per QALY if VE against ST3 was estimated to be equivalent to other PCV13-types. Administering PCV13 in series with the recommended PPSV23 for adults with CMC was not cost saving. Results were sensitive to estimated PCV13 VE against ST3 disease

    Penicillin Resistance of Nonvaccine Type Pneumococcus before and after PCV13 Introduction, United States

    No full text
    Introduction of 13-valent pneumococcal conjugate vaccine in the United States was not associated with a significant change in prevalence of penicillin resistance in nonvaccine type serotypes because of the variable success of highly resistant serotypes. Differences in regional serotype distribution and serotype-specific resistance contributed to geographic heterogeneity of penicillin resistance

    Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel - 33 U.S. Sites, January-March 2021

    Get PDF
    Throughout the COVID-19 pandemic, health care personnel (HCP) have been at high risk for exposure to SARS-CoV-2, the virus that causes COVID-19, through patient interactions and community exposure (1). The Advisory Committee on Immunization Practices recommended prioritization of HCP for COVID-19 vaccination to maintain provision of critical services and reduce spread of infection in health care settings (2). Early distribution of two mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna) to HCP allowed assessment of the effectiveness of these vaccines in a real-world setting. A test-negative case-control study is underway to evaluate mRNA COVID-19 vaccine effectiveness (VE) against symptomatic illness among HCP at 33 U.S. sites across 25 U.S. states. Interim analyses indicated that the VE of a single dose (measured 14 days after the first dose through 6 days after the second dose) was 82% (95% confidence interval [CI] = 74%-87%), adjusted for age, race/ethnicity, and underlying medical conditions. The adjusted VE of 2 doses (measured \u3e /=7 days after the second dose) was 94% (95% CI = 87%-97%). VE of partial (1-dose) and complete (2-dose) vaccination in this population is comparable to that reported from clinical trials and recent observational studies, supporting the effectiveness of mRNA COVID-19 vaccines against symptomatic disease in adults, with strong 2-dose protection
    • …
    corecore