109 research outputs found

    Dephasing and Measurement Efficiency via a Quantum Dot Detector

    Full text link
    We study charge detection and controlled dephasing of a mesoscopic system via a quantum dot detector (QDD), where the mesoscopic system and the QDD are capacitively coupled. The QDD is considered to have coherent resonant tunnelling via a single level. It is found that the dephasing rate is proportional to the square of the conductance of the QDD for the Breit-Wigner model, showing that the dephasing is completely different from the shot noise of the detector. The measurement rate, on the other hand, shows a dip near the resonance. Our findings are peculiar especially for a symmetric detector in the following aspect: The dephasing rate is maximum at resonance of the QDD where the detector conductance is insensitive to the charge state of the mesoscopic system. As a result, the efficiency of the detector shows a dip and vanishes at resonance, in contrast to the single-channel symmetric non-resonant detector that has always a maximum efficiency. We find that this difference originates from a very general property of the scattering matrix: The abrupt phase change exists in the scattering amplitudes in the presence of the symmetry, which is insensitive to the detector current but {\em stores} the information of the quantum state of the mesoscopic system.Comment: 7 pages, 3 figure

    Electronic Origin of the Inhomogeneous Pairing Interaction in the High-Tc Superconductor Bi2Sr2CaCu2O8+d

    Full text link
    Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+d using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates

    Fredholm determinants and the statistics of charge transport

    Full text link
    Using operator algebraic methods we show that the moment generating function of charge transport in a system with infinitely many non-interacting Fermions is given by a determinant of a certain operator in the one-particle Hilbert space. The formula is equivalent to a formula of Levitov and Lesovik in the finite dimensional case and may be viewed as its regularized form in general. Our result embodies two tenets often realized in mesoscopic physics, namely, that the transport properties are essentially independent of the length of the leads and of the depth of the Fermi sea.Comment: 30 pages, 2 figures, reference added, credit amende

    Proximity effects at ferromagnet-superconductor interfaces

    Full text link
    We study proximity effects at ferromagnet superconductor interfaces by self-consistent numerical solution of the Bogoliubov-de Gennes equations for the continuum, without any approximations. Our procedures allow us to study systems with long superconducting coherence lengths. We obtain results for the pair potential, the pair amplitude, and the local density of states. We use these results to extract the relevant proximity lengths. We find that the superconducting correlations in the ferromagnet exhibit a damped oscillatory behavior that is reflected in both the pair amplitude and the local density of states. The characteristic length scale of these oscillations is approximately inversely proportional to the exchange field, and is independent of the superconducting coherence length in the range studied. We find the superconducting coherence length to be nearly independent of the ferromagnetic polarization.Comment: 13 Pages total. Compressed .eps figs might display poorly, but will print fin

    Probe-configuration dependent dephasing in a mesoscopic interferometer

    Full text link
    Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge and voltage fluctuations is investigated. Treating two terminals as voltage probes, we find a strong dependence of the dephasing rate on the probe configuration in agreement with a recent experiment by Kobayashi et al. (J. Phys. Soc. Jpn. 71, 2094 (2002)). Voltage fluctuations in the measurement circuit are shown to be the source of the configuration dependence.Comment: 4 pages, 3 figure

    Single-cell reconstruction of follicular remodeling in the human adult ovary

    Get PDF
    The ovary is perhaps the most dynamic organ in the human body, only rivaled by the uterus. The molecular mechanisms that regulate follicular growth and regression, ensuring ovarian tissue homeostasis, remain elusive. We have performed single-cell RNA-sequencing using human adult ovaries to provide a map of the molecular signature of growing and regressing follicular populations. We have identified different types of granulosa and theca cells and detected local production of components of the complement system by (atretic) theca cells and stromal cells. We also have detected a mixture of adaptive and innate immune cells, as well as several types of endothelial and smooth muscle cells to aid the remodeling process. Our results highlight the relevance of mapping whole adult organs at the single-cell level and reflect ongoing efforts to map the human body. The association between complement system and follicular remodeling may provide key insights in reproductive biology and (in) fertility

    Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures

    Full text link
    We discuss a number of basic physical mechanisms relevant to the formation of the proximity effect in superconductor/normal metal (SN) systems. Specifically, we review why the proximity effect sharply discriminates between systems with integrable and chaotic dynamics, respectively, and how this feature can be incorporated into theories of SN systems. Turning to less well investigated terrain, we discuss the impact of quantum diffractive scattering on the structure of the density of states in the normal region. We consider ballistic systems weakly disordered by pointlike impurities as a test case and demonstrate that diffractive processes akin to normal metal weak localization lead to the formation of a hard spectral gap -- a hallmark of SN systems with chaotic dynamics. Turning to the more difficult case of clean systems with chaotic boundary scattering, we argue that semiclassical approaches, based on classifications in terms of classical trajectories, cannot explain the gap phenomenon. Employing an alternative formalism based on elements of quasiclassics and the ballistic σ\sigma-model, we demonstrate that the inverse of the so-called Ehrenfest time is the relevant energy scale in this context. We discuss some fundamental difficulties related to the formulation of low energy theories of mesoscopic chaotic systems in general and how they prevent us from analysing the gap structure in a rigorous manner. Given these difficulties, we argue that the proximity effect represents a basic and challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde

    Charge Pumping in Mesoscopic Systems coupled to a Superconducting Lead

    Full text link
    We derive a general scattering-matrix formula for the pumped current through a mesoscopic region attached to a normal and a superconducting lead. As applications of this result we calculate the current pumped through (i) a pump in a wire, (ii) a quantum dot in the Coulomb blockade regime, and (iii) a ballistic double-barrier junction, all coupled to a superconducting lead. Andreev reflection is shown to enhance the pumped current by up to a factor of 4 in case of equal coupling to the leads. We find that this enhancement can still be further increased for slightly asymmetric coupling.Comment: 5 pages, 2 figure

    Proximity effects and characteristic lengths in ferromagnet-superconductor structures

    Full text link
    We present an extensive theoretical investigation of the proximity effects that occur in Ferromagnet/Superconductor (F/SF/S) systems. We use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. We obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing the leakage of superconductivity into the magnet and to study spin splitting into the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wavevector mismatch, all of which turn out to have important influence on the results. These comprehensive results should help characterize and analyze future data and are shown to be in agreement with existing experiments.Comment: 24 pages, including 26 figure

    In Vivo Monitoring of mRNA Movement in Drosophila Body Wall Muscle Cells Reveals the Presence of Myofiber Domains

    Get PDF
    Background: In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. Methodology/Principal Findings: In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. Conclusions/Significance: These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cellbase
    corecore