115 research outputs found
A coupling prescription for post-Newtonian corrections in Quantum Mechanics
The interplay between quantum theory and general relativity remains one of the main challenges of modern physics. A renewed interest in the low-energy limit is driven by the prospect of new experiments that could probe this interface. Here we develop a covariant framework for expressing post-Newtonian corrections to Schr\"odinger's equation on arbitrary gravitational backgrounds based on a expansion of Lorentzian geometry, where is the speed of light. Our framework provides a generic coupling prescription of quantum systems to gravity that is valid in the intermediate regime between Newtonian gravity and General Relativity, and that retains the focus on geometry. At each order in this produces a nonrelativistic geometry to which quantum systems at that order couple. By considering the gauge symmetries of both the nonrelativistic geometries and the expansion of the complex Klein--Gordon field, we devise a prescription that allows us to derive the Schr\"odinger equation and its post-Newtonian corrections on a gravitational background order-by-order in . We also demonstrate that these results can be obtained from a expansion of the complex Klein--Gordon Lagrangian. We illustrate our methods by performing the expansion of the Kerr metric up to , which leads to a special case of the Hartle--Thorne metric. The associated Schr\"odinger equation captures novel and potentially measurable effects
Interlayer superfluidity in bilayer systems of fermionic polar molecules
We consider fermionic polar molecules in a bilayer geometry where they are
oriented perpendicularly to the layers, which permits both low inelastic losses
and superfluid pairing. The dipole-dipole interaction between molecules of
different layers leads to the emergence of interlayer superfluids. The
superfluid regimes range from BCS-like fermionic superfluidity with a high
to Bose-Einstein (quasi-)condensation of interlayer dimers, thus
exhibiting a peculiar BCS-BEC crossover. We show that one can cover the entire
crossover regime under current experimental conditions.Comment: 4 pages, 4 figure
A coupling prescription for post-Newtonian corrections in Quantum Mechanics
The interplay between quantum theory and general relativity remains one of
the main challenges of modern physics. A renewed interest in the low-energy
limit is driven by the prospect of new experiments that could probe this
interface. Here we develop a covariant framework for expressing post-Newtonian
corrections to Schr\"odinger's equation on arbitrary gravitational backgrounds
based on a expansion of Lorentzian geometry, where is the speed of
light. Our framework provides a generic coupling prescription of quantum
systems to gravity that is valid in the intermediate regime between Newtonian
gravity and General Relativity, and that retains the focus on geometry. At each
order in this produces a nonrelativistic geometry to which quantum
systems at that order couple. By considering the gauge symmetries of both the
nonrelativistic geometries and the expansion of the complex
Klein--Gordon field, we devise a prescription that allows us to derive the
Schr\"odinger equation and its post-Newtonian corrections on a gravitational
background order-by-order in . We also demonstrate that these results
can be obtained from a expansion of the complex Klein--Gordon
Lagrangian. We illustrate our methods by performing the expansion of
the Kerr metric up to , which leads to a special case of
the Hartle--Thorne metric. The associated Schr\"odinger equation captures novel
and potentially measurable effects.Comment: 43 pages incl. 1 appendix, 1 figur
Creating and Verifying a Quantum Superposition in a Micro-optomechanical System
Micro-optomechanical systems are central to a number of recent proposals for
realizing quantum mechanical effects in relatively massive systems. Here we
focus on a particular class of experiments which aim to demonstrate massive
quantum superpositions, although the obtained results should be generalizable
to similar experiments. We analyze in detail the effects of finite temperature
on the interpretation of the experiment, and obtain a lower bound on the degree
of non-classicality of the cantilever. Although it is possible to measure the
quantum decoherence time when starting from finite temperature, an unambiguous
demonstration of a quantum superposition requires the mechanical resonator to
be in or near the ground state. This can be achieved by optical cooling of the
fundamental mode, which also provides a method to measure the mean phonon
number in that mode. We also calculate the rate of environmentally induced
decoherence and estimate the timescale for gravitational collapse mechanisms as
proposed by Penrose and Diosi. In view of recent experimental advances,
practical considerations for the realization of the described experiment are
discussed.Comment: 19 pages, 8 figures, published in New J. Phys. 10 095020 (2008);
minor revisions to improve clarity; fixed possibly corrupted figure
Pulsed quantum optomechanics
Studying mechanical resonators via radiation pressure offers a rich avenue
for the exploration of quantum mechanical behavior in a macroscopic regime.
However, quantum state preparation and especially quantum state reconstruction
of mechanical oscillators remains a significant challenge. Here we propose a
scheme to realize quantum state tomography, squeezing and state purification of
a mechanical resonator using short optical pulses. The scheme presented allows
observation of mechanical quantum features despite preparation from a thermal
state and is shown to be experimentally feasible using optical microcavities.
Our framework thus provides a promising means to explore the quantum nature of
massive mechanical oscillators and can be applied to other systems such as
trapped ions.Comment: 9 pages, 4 figure
Bound Chains of Tilted Dipoles in Layered Systems
Ultracold polar molecules in multilayered systems have been experimentally
realized very recently. While experiments study these systems almost
exclusively through their chemical reactivity, the outlook for creating and
manipulating exotic few- and many-body physics in dipolar systems is
fascinating. Here we concentrate on few-body states in a multilayered setup. We
exploit the geometry of the interlayer potential to calculate the two- and
three-body chains with one molecule in each layer. The focus is on dipoles that
are aligned at some angle with respect to the layer planes by means of an
external eletric field. The binding energy and the spatial structure of the
bound states are studied in several different ways using analytical approaches.
The results are compared to stochastic variational calculations and very good
agreement is found. We conclude that approximations based on harmonic
oscillator potentials are accurate even for tilted dipoles when the geometry of
the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on
Critical Stability, revised versio
Density Waves in Layered Systems with Fermionic Polar Molecules
A layered system of two-dimensional planes containing fermionic polar
molecules can potentially realize a number of exotic quantum many-body states.
Among the predictions, are density-wave instabilities driven by the anisotropic
part of the dipole-dipole interaction in a single layer. However, in typical
multilayer setups it is reasonable to expect that the onset and properties of a
density-wave are modified by adjacent layers. Here we show that this is indeed
the case. For multiple layers the critical strength for the density-wave
instability decreases with the number of layers. The effect depends on density
and is more pronounced in the low density regime. The lowest solution of the
instability corresponds to the density waves in the different layers being
in-phase, whereas higher solutions have one or several adjancet layers that are
out of phase. The parameter regime needed to explore this instability is within
reach of current experiments.Comment: 7 pages, 4 figures. Final version in EPJD, EuroQUAM special issue
"Cold Quantum Matter - Achievements and Prospects
- …