151 research outputs found

    Inhomogeneous charge transfer within monolayer zinc phthalocyanine absorbed on TiO2(110)

    Get PDF
    The d-orbital contribution from the transition metal centers of phthalocyanine brings difficulties to understand the role of the organic ligands and their molecular frontier orbitals when it adsorbs on oxide surfaces. Here we use zinc phthalocyanine (ZnPc)TiO (110) as a model system where the zinc d-orbitals are located deep below the organic orbitals leaving room for a detailed study of the interaction between the organic ligand and the substrate. A charge depletion from the highest occupied molecular orbital is observed, and a consequent shift of N1s and C1s to higher binding energy in photoelectron spectroscopy (PES). A detailed comparison of peak shifts in PES and near-edge X-ray absorption fine structure spectroscopy illustrates a slightly uneven charge distribution within the molecular plane and an inhomogeneous charge transfer screening between the center and periphery of the organic ligand: faster in the periphery and slower at the center, which is different from other metal phthalocyanine, e.g., FePcTiO . Our results indicate that the metal center can substantially influence the electronic properties of the organic ligand at the interface by introducing an additional charge transfer channel to the inner molecular part

    A mouse model for HIV-1 entry

    Get PDF
    Passive transfer of neutralizing antibodies against HIV-1 can prevent infection in macaques and seems to delay HIV-1 rebound in humans. Anti-HIV antibodies are therefore of great interest for vaccine design. However, the basis for their in vivo activity has been difficult to evaluate systematically because of a paucity of small animal models for HIV infection. Here we report a genetically humanized mouse model that incorporates a luciferase reporter for rapid quantitation of HIV entry. An antibody’s ability to block viral entry in this in vivo model is a function of its bioavailability, direct neutralizing activity, and effector functions

    Order-disorder criticality, wetting, and morphological phase transitions in the irreversible growth of far-from-equilibrium magnetic films

    Full text link
    An exhaustive numerical investigation of the growth of magnetic films in confined (d+1)(d+1)-dimensional stripped geometries (d=1,2d=1,2) is carried out by means of extensive Monte Carlo simulations. Thin films in contact with a thermal bath are grown by adding spins with two possible orientations and considering ferromagnetic (nearest-neighbor) interactions. At low temperatures, it is observed that the films exhibit ``spontaneous magnetization reversals'' during the growth process. Furthermore, it is found that for d=1d=1 the system is non-critical, while a continuous order-disorder phase transition at finite temperature takes place in the d=2d=2 case. Using standard finite-size scaling procedures, the critical temperature and some relevant critical exponents are determined. Finally, the growth of magnetic films in (2+1)(2+1) dimensions with competing short-range magnetic fields acting along the confinement walls is studied. Due to the antisymmetric condition considered, an interface between domains with spins having opposite orientation develops along the growing direction. Such an interface undergoes a localization-delocalization transition that is the precursor of a wetting transition in the thermodynamic limit. Furthermore, the growing interface also undergoes morphological transitions in the growth mode. A comparison between the well-studied equilibrium Ising model and the studied irreversible magnetic growth model is performed throughout. Although valuable analogies are encountered, it is found that the nonequilibrium nature of the latter introduces new and rich physical features of interest.Comment: 23 pages, 10 figure

    Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model

    Full text link
    The Magnetic Eden Model (MEM) with ferromagnetic interactions between nearest-neighbor spins is studied in (d+1)(d+1)-dimensional rectangular geometries for d=1,2d = 1,2. In the MEM, magnetic clusters are grown by adding spins at the boundaries of the clusters. The orientation of the added spins depends on both the energetic interaction with already deposited spins and the temperature, through a Boltzmann factor. A numerical Monte Carlo investigation of the MEM has been performed and the results of the simulations have been analyzed using finite-size scaling arguments. As in the case of the Ising model, the MEM in d=1d = 1 is non-critical (only exhibits an ordered phase at T=0T= 0). In d=2d = 2 the MEM exhibits an order-disorder transition of second-order at a finite temperature. Such transition has been characterized in detail and the relevant critical exponents have been determined. These exponents are in agreement (within error bars) with those of the Ising model in 2 dimensions. Further similarities between both models have been found by evaluating the probability distribution of the order parameter, the magnetization and the susceptibility. Results obtained by means of extensive computer simulations allow us to put forward a conjecture which establishes a nontrivial correspondence between the MEM for the irreversible growth of spins and the equilibrium Ising model. This conjecture is certainly a theoretical challenge and its confirmation will contribute to the development of a framework for the study of irreversible growth processes.Comment: 21 pages, 11 figure

    Ultrafast dissociation features in RIXS spectra of the water molecule

    Get PDF
    In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X ray scattering RIXS spectra of gas phase water via the lowest dissociative core excited state 1s amp; 8722;1O4a11 amp; 12297;. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state 1b amp; 8722;114a11 amp; 12297; of the molecule. The spectral feature has signatures of ultrafast dissociation UFD in the core excited state, as we show by means of ab initio calculations and time dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core excited state resonance, we can understand and single out the molecular and atomic like contributions in the decay to the lowest valence excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water HDO and D2O where the nuclear dynamics is significantly affected by the heavier fragments mas

    A study of the water molecule using frequency control over nuclear dynamics in resonant X ray scattering

    Get PDF
    In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X ray scattering RIXS spectra of H 2O, D 2O and HDO. We demonstrate that electronically elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X ray frequency across core excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied system

    Viremic HIV Infected Individuals with High CD4 T Cells and Functional Envelope Proteins Show Anti-gp41 Antibodies with Unique Specificity and Function

    Get PDF
    BACKGROUND: CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation. METHODS: We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed. RESULTS: Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV. CONCLUSIONS: Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack of CD4 T cell decay in VNPs by blocking the induction of NKp44L by gp41

    Combining scanning probe microscopy and x-ray spectroscopy

    Get PDF
    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented
    corecore