1,105 research outputs found

    Slow equivariant lump dynamics on the two sphere

    Full text link
    The low-energy, rotationally equivariant dynamics of n CP^1 lumps on S^2 is studied within the approximation of geodesic motion in the moduli space of static solutions. The volume and curvature properties of this moduli space are computed. By lifting the geodesic flow to the completion of an n-fold cover of the moduli space, a good understanding of nearly singular lump dynamics within this approximation is obtained.Comment: 12 pages, 3 figure

    Formation of singularities for equivariant 2+1 dimensional wave maps into the two-sphere

    Full text link
    In this paper we report on numerical studies of the Cauchy problem for equivariant wave maps from 2+1 dimensional Minkowski spacetime into the two-sphere. Our results provide strong evidence for the conjecture that large energy initial data develop singularities in finite time and that singularity formation has the universal form of adiabatic shrinking of the degree-one harmonic map from R2\mathbb{R}^2 into S2S^2.Comment: 14 pages, 5 figures, final version to be published in Nonlinearit

    Supersymmetric WZW σ\sigma Model on Full and Half Plane

    Full text link
    We study classical integrability of the supersymmetric U(N) σ\sigma model with the Wess-Zumino-Witten term on full and half plane. We demonstrate the existence of nonlocal conserved currents of the model and derive general recursion relations for the infinite number of the corresponding charges in a superfield framework. The explicit form of the first few supersymmetric charges are constructed. We show that the considered model is integrable on full plane as a concequence of the conservation of the supersymmetric charges. Also, we study the model on half plane with free boundary, and examine the conservation of the supersymmetric charges on half plane and find that they are conserved as a result of the equations of motion and the free boundary condition. As a result, the model on half plane with free boundary is integrable. Finally, we conclude the paper and some features and comments are presented.Comment: 12 pages. submitted to IJMP

    The Casimir energy of skyrmions in the 2+1-dimensional O(3)-model

    Get PDF
    One-loop quantum corrections to the classical vortices in 2+1 dimensional O(3)-models are evaluated. Skyrme and Zeeman potential terms are used to stabilize the size of topological solitons. Contributions from zero modes, bound-states and scattering phase-shifts are calculated for vortices with winding index n=1 and n=2. For both cases the S-matrix shows a pronounced series of resonances for magnon-vortex scattering in analogy to the well-established baryon resonances in hadron physics, while vortices with n>2 are already classically unstable against decay. The quantum corrections destabilize the classically bound n=2 configuration. Approximate independence of the results with respect to changes in the renormalization scale is demonstrated.Comment: 24 pages LaTeX, 14 figure

    Magnetothermodynamics of BPS baby skyrmions

    Get PDF
    The magnetothermodynamics of skyrmion type matter described by the gauged BPS baby Skyrme model at zero temperature is investigated. We prove that the BPS property of the model is preserved also for boundary conditions corresponding to an asymptotically constant magnetic field. The BPS bound and the corresponding BPS equations saturating the bound are found. Further, we show that one may introduce pressure in the gauged model by a redefinition of the superpotential. Interestingly, this is related to non-extremal type solutions in the so-called fake supersymmetry method. Finally, we compute the equation of state of magnetized BSP baby skyrmions inserted into an external constant magnetic field HH and under external pressure PP, i.e., V=V(P,H)V=V(P,H), where VV is the "volume" (area) occupied by the skyrmions. We show that the BPS baby skyrmions form a ferromagnetic medium.Comment: Latex, 39 pages, 14 figures. v2: New results and references added, physical interpretation partly change

    Post‐discharge tobacco cessation rates among hospitalized US veterans with and without diabetes

    Full text link
    Aims  Smoking is a major risk factor for cardiovascular complications among patients with diabetes. Hospitalization has been shown to enhance cessation rates. The purpose of this study was to compare 6‐month post‐hospitalization tobacco cessation rates among US veterans with and without diabetes. Methods  This was a longitudinal study among inpatient veterans who used tobacco in the past month ( n  = 496). Patients were recruited and surveyed from three Midwestern Department of Veterans Affairs hospitals during an acute‐care hospitalization. They were also asked to complete a follow‐up survey 6 months post‐discharge. Bivariate‐ and multivariable‐adjusted analyses were conducted to determine differences in tobacco cessation rates between patients with and without a diagnosis of diabetes. Results  The mean age of patients was 55.2 years and 62% were white. Twenty‐nine per cent had co‐morbid diabetes. A total of 18.8% of patients with diabetes reported tobacco cessation at 6 months compared with 10.9% of those without diabetes ( P  = 0.02). Cotinine‐verified cessation rates were 12.5 vs. 7.4% in the groups with and without diabetes, respectively ( P  = 0.07). Controlling for psychiatric co‐morbidities, depressive symptoms, age, self‐rated health and nicotine dependence, the multivariable‐adjusted logistic regression showed that patients with diabetes had three times higher odds of 6‐month cotinine‐verified tobacco cessation as compared with those without diabetes (odds ratio 3.17, P  = 0.005). Conclusions  Post‐hospitalization rates of smoking cessation are high among those with diabetes. Intensive tobacco cessation programmes may increase these cessation rates further.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92145/1/j.1464-5491.2012.03635.x.pd

    A geometric interpretation of the spectral parameter for surfaces of constant mean curvature

    Full text link
    Considering the kinematics of the moving frame associated with a constant mean curvature surface immersed in S^3 we derive a linear problem with the spectral parameter corresponding to elliptic sinh-Gordon equation. The spectral parameter is related to the radius R of the sphere S^3. The application of the Sym formula to this linear problem yields constant mean curvature surfaces in E^3. Independently, we show that the Sym formula itself can be derived by an appropriate limiting process R -> infinity.Comment: 12 page

    New Integrable Sectors in Skyrme and 4-dimensional CP^n Model

    Get PDF
    The application of a weak integrability concept to the Skyrme and CPnCP^n models in 4 dimensions is investigated. A new integrable subsystem of the Skyrme model, allowing also for non-holomorphic solutions, is derived. This procedure can be applied to the massive Skyrme model, as well. Moreover, an example of a family of chiral Lagrangians providing exact, finite energy Skyrme-like solitons with arbitrary value of the topological charge, is given. In the case of CPnCP^n models a tower of integrable subsystems is obtained. In particular, in (2+1) dimensions a one-to-one correspondence between the standard integrable submodel and the BPS sector is proved. Additionally, it is shown that weak integrable submodels allow also for non-BPS solutions. Geometric as well as algebraic interpretations of the integrability conditions are also given.Comment: 23 page

    A Skyrme-type proposal for baryonic matter

    Get PDF
    The Skyrme model is a low-energy effective field theory for QCD, where the baryons emerge as soliton solutions. It is, however, not so easy within the standard Skyrme model to reproduce the almost exact linear growth of the nuclear masses with the baryon number (topological charge), due to the lack of Bogomolny solutions in this model, which has also hindered analytical progress. Here we identify a submodel within the Skyrme-type low energy effective action which does have a Bogomolny bound and exact Bogomolny solutions, and therefore, at least at the classical level, reproduces the nuclear masses by construction. Due to its high symmetry, this model qualitatively reproduces the main features of the liquid droplet model of nuclei. Finally, we discuss under which circumstances the proposed sextic term, which is of an essentially geometric and topological nature, can be expected to give a reasonable description of properties of nuclei.Comment: 11 pages, 2 figures, latex. v3: Extended and revised version, some clarifications added. Some references and 2 figures added. v4: matches published versio
    • 

    corecore