3,275 research outputs found

    Impurity-assisted Andreev reflection at a spin-active half-metal-superconductor interface

    Get PDF
    The Andreev reflection amplitude at a clean interface between a half-metallic ferromagnet (H) and a superconductor (S) for which the half metal's magnetization has a gradient perpendicular to the interface is proportional to the excitation energy ε\varepsilon and vanishes at ε=0\varepsilon=0 [B\'{e}ri {\em et al.}, Phys.\ Rev.\ B {\bf 79}, 024517 (2009)]. Here we show that the presence of impurities at or in the immediate vicinity of the HS interface leads to a finite Andreev reflection amplitude at ε=0\varepsilon=0. This impurity-assisted Andreev reflection dominates the low-bias conductance of a HS junction and the Josephson current of an SHS junction in the long-junction limit.Comment: 12 pages, 2 figure

    Andreev reflection at half-metal-superconductor interfaces with non-uniform magnetization

    Full text link
    Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case that the spin flip originates from a spatially non-uniform magnetization direction in the half metal. We calculate both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of the gradient of the magnetization with respect to the interface. Establishing a connection between the scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green function in the half metal.Comment: 13 pages, 4 figure

    Сравнительная морфофункциональная оценка различных способов диссекции печеночной паренхимы

    Get PDF
    Проведена оценка морфофункционального состояния печени до и после резекции с применением различных методов диссекции печеночной паренхимы. Показано, что при выполнении обширных резекций печени целесообразно применение методик ультразвуковой, струйной диссекции или методики "clamp crushing".Проведено оцінку морфофункціонального стану печінки до і після резекції із застосуванням різних методів дисекції печінкової паренхіми. Показано, що під час виконання обширних резекцій печінки доцільним є використання методики ультразвукової, струменевої дисекції або методики "clamp crushing".The morphofunctional state of the liver before and after resection using different methods of dissection of liver parenchyma are assessed. It is shown that at large resections of the liver it is reasonable to use the methods of ultrasound, stream dissection or "clamp crushing" technique

    Exact Energy-Time Uncertainty Relation for Arrival Time by Absorption

    Full text link
    We prove an uncertainty relation for energy and arrival time, where the arrival of a particle at a detector is modeled by an absorbing term added to the Hamiltonian. In this well-known scheme the probability for the particle's arrival at the counter is identified with the loss of normalization for an initial wave packet. Under the sole assumption that the absorbing term vanishes on the initial wave function, we show that ΔTΔEp/2\Delta T \Delta E \geq \sqrt p \hbar/2 and ΔE1.37p \Delta E\geq 1.37\sqrt p\hbar, where ee denotes the mean arrival time, and pp is the probability for the particle to be eventually absorbed. Nearly minimal uncertainty can be achieved in a two-level system, and we propose a trapped ion experiment to realize this situation.Comment: 8 pages, 2 figure

    Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    Get PDF
    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap

    How many young star clusters exist in the Galactic center?

    Get PDF
    We study the evolution and observability of young compact star clusters within about 200pc of the Galactic center. Calculations are performed using direct N-body integration on the GRAPE-4, including the effects of both stellar and binary evolution and the external influence of the Galaxy. The results of these detailed calculations are used to calibrate a simplified model applicable over a wider range of cluster initial conditions. We find that clusters within 200 pc from the Galactic center dissolve within about 70 Myr. However, their projected densities drop below the background density in the direction of the Galactic center within 20 Myr, effectively making these clusters undetectable after that time. Clusters farther from the Galactic center but at the same projected distance are more strongly affected by this selection effect, and may go undetected for their entire lifetimes. Based on these findings, we conclude that the region within 200 pc of the Galactic center could easily harbor some 50 clusters with properties similar to those of the Arches or the Quintuplet systems.Comment: ApJ Letters in pres

    Sympathetic Cooling of Mixed Species Two-Ion Crystals for Precision Spectroscopy

    Get PDF
    Sympathetic cooling of trapped ions has become an indispensable tool for quantum information processing and precision spectroscopy. In the simplest situation a single Doppler-cooled ion sympathetically cools another ion which typically has a different mass. We analytically investigate the effect of the mass ratio of such an ion crystal on the achievable temperature limit in the presence of external heating. As an example, we show that cooling of a single Al+ with Be+, Mg+ and Ca+ ions provides similar results for heating rates typically observed in ion traps, whereas cooling ions with a larger mass perform worse. Furthermore, we present numerical simulation results of the rethermalisation dynamics after a background gas collision for the Al+/Ca+ crystal for different cooling laser configurations.Comment: Made Graphics black & white print compatible, clarified abstract and summar
    corecore