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Impurity-assisted Andreev reflection at a spin-active half metal-superconductor interface
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The Andreev reflection amplitude at a clean interface between a half-metallic ferromagnet (H) and a
superconductor (S) for which the half metal’s magnetization has a gradient perpendicular to the interface is
proportional to the excitation energy ε and vanishes at ε = 0 [Béri et al., Phys. Rev. B 79, 024517 (2009)]. Here
we show that the presence of impurities at or in the immediate vicinity of the HS interface leads to a finite Andreev
reflection amplitude at ε = 0. This impurity-assisted Andreev reflection dominates the low-bias conductance of
an HS junction and the Josephson current of an SHS junction in the long-junction limit.
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I. INTRODUCTION

The experimental observation of a sizable supercurrent
through a Josephson junction containing the half-metallic
ferromagnet CrO2 (Refs. 1–3) has renewed theoretical interest
in the superconductor proximity effect in half metals.4–12

Because of the absence of minority spin carriers in a half
metal,13,14 the induced superconducting correlations must be
of the spin-triplet type, even if they arise from proximity to a
spin-singlet superconductor.15–19

The spin-triplet proximity effect is mediated by Andreev
reflections20 of majority electrons into majority holes. Since
such Andreev reflections violate spin conservation—spin-
conserving Andreev reflection reflects majority electrons into
minority holes—they require breaking of the spin-rotation
symmetry around the half metal’s spin-quantization axis. In
other words, the breaking of spin-rotation symmetry allows for
the conversion of the singlet correlations in the superconductor
to the triplet correlations in the half metal. A prominent
mechanism for the breaking of the spin-rotation symmetry
is a magnetization gradient perpendicular to the interface
between the superconductor and the half metal (see Fig. 1),
which occurs naturally in the presence of a magnetic interface
anisotropy that favors a different magnetization direction
than the magnet’s bulk anisotropy.21 In the literature, an
interface with a different magnetization direction than the
bulk magnetization direction is referred to as “spin active.”6

Artificially created spin-active interfaces have been shown to
be responsible for the observation of the spin-triplet proximity
effect in standard (non-half-metallic) ferromagnets.22–24 In
view of the observed biaxial magnetic anisotropy of CrO2 thin
films,1,25,26 spin-active interfaces have also been proposed as
an explanation for the observed Josephson effect in the CrO2-
based Josephson junctions,6 but there is no direct experimental
evidence confirming this link.1

What makes the spin-triplet proximity effect in a half
metal particularly interesting from a theoretical point of view
is that there is a symmetry argument that strongly limits
the effectiveness of a spin-active interface as a source of
spin-triplet superconducting correlations.7,10 This symmetry
argument applies to the case of a half metal, but not to a
standard ferromagnet (with incomplete spin polarization). It
essentially forbids Andreev reflection of majority electrons
into majority holes or vice versa if five key conditions are

met:27 particle-hole symmetry, translation symmetry along
the superconductor interface, π -rotation symmetry around
an axis normal to the superconductor interface, quasiparticle
conservation, and the absence of minority carriers. All five
conditions are met for Andreev reflection of carriers at
the Fermi level in a clean spin-active interface between a
half metal (H) and a superconductor (S). Away from the
Fermi level, particle-hole degeneracy is lifted, and generically
the Andreev reflection amplitudes are proportional to the
excitation energy ε.7,10,28 This energy dependence leads to
an interface conductance G ∝ (eV )2, where V is the applied
bias, and to a Josephson current I ∝ max(kBT ,EL)3 for a
clean SHS junction at temperature T in the “long-junction”
limit (i.e., gap �0 much larger than the junction’s Thouless
energy EL).7,10,28 In contrast, for junctions involving a standard
ferromagnet, the zero-bias conductance G is finite, whereas
I ∝ max(kBT ,EL).19,29–31

In order to open up the possibility of Andreev reflection
at the Fermi level, one of the remaining four conditions
listed above has to be lifted. Several options have been
investigated in the literature, and have been shown to lead
to a finite zero-bias conductance G of an HS junction and to a
temperature dependence of the Josephson current of a ballistic
SHS junction that closely resembles junctions with a standard
ferromagnet instead of a half metal. These include the breaking
of the rotation symmetry around an axis normal to the super-
conductor interface by a magnetization gradient parallel to the
interface8,10 or by spin-orbit coupling in the superconductor,11

or the inelastic scattering of quasiparticles in the half metal,
which effectively lifts quasiparticle conservation.32

In this article, we investigate the lifting of the translation
symmetry along the interface by scattering from nonmag-
netic impurities. This is particularly relevant for CrO2-based
junctions, as interfaces between the metastable compound
CrO2 and other materials are notoriously poorly defined.14 We
confirm that impurity scattering, too, is a viable mechanism for
Andreev reflection of majority electrons into majority holes at
an HS junction at the Fermi level. Moreover, we show that
this impurity-assisted Andreev reflection remains coherent,
with a well-defined magnitude and phase, after performing
an average over different impurity configurations. As a result,
impurity-assisted Andreev reflection not only gives rise to a
finite zero-bias conductance, but also to a strong enhancement
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FIG. 1. HS interface with a spin-active interface, originating
from a magnetization gradient perpendicular to the interface. Arrows
indicate the magnetization direction.

of the Josephson current at low temperatures. Our analytical
calculations are consistent with a numerical analysis of the
triplet proximity effect in a strongly disordered half metal by
Asano et al.,4,5 who did not report any suppression of the
induced superconducting correlations for energies near the
Fermi level.

The detailed outline of this article is as follows: In Sec. II,
we describe the model Hamiltonian used in our calculations
and review the basic symmetry relations for the scattering
matrix of an HS interface. Then, in Sec. III, we calculate the
Andreev amplitude for an HS interface with a single impurity,
up to quadratic order in the impurity potential. We apply our
results to an interface with a finite density of impurities in
Sec. IV, where we show that the presence of impurities at
the interface leads to a finite interface conductance at zero
bias and to a significantly enhanced Josephson current at low
temperatures. We conclude in Sec. V. The appendices contain
various additional results for scenarios not covered in the main
text.

II. HALF METAL-SUPERCONDUCTOR INTERFACE WITH
PERPENDICULAR MAGNETIZATION GRADIENT

A. Model Hamiltonian without perturbations

Our calculation builds on the calculation of the Andreev
reflection amplitudes for a clean half metal-superconductor
interface with a perpendicular magnetization gradient by
Kupferschmidt and one of the authors.10 Following Ref. 10,
we choose coordinates such that the superconductor occupies
the half space z > 0 and the HS interface is in the xy plane;
see Fig. 1. Periodic boundary conditions are applied in the
x and y directions, with periods Wx and Wy , respectively.
Quasiparticle excitations near the HS interface are described
by the Bogoliubov-de Gennes equation,33

H�(r) = ε�(r), H = H0 + V, (1)

where

H0 =
(

Ĥ0 i�(r)σ2

−i�∗(r)σ2 −Ĥ ∗
0

)
, (2)

and the four-component spinor

�(r) = (u↑(r),u↓(r),v↑(r),v↓(r))T (3)

consists of wave functions uσ (r) for the electron and vσ (r)
for the hole degrees of freedom. The 4 × 4 matrix operator

H0 describes the HS junction in the absence of a magnetiza-
tion gradient and impurity scattering. These two effects are
described by the perturbation V and will be discussed in the
next section.

The superconducting order parameter �(r) = �0e
iφ�(z),

where �(z) = 1 if z > 0 and 0 otherwise. This step-function
model is a good approximation for tunneling interfaces of
s-wave superconductors.34 For the single-particle Hamiltonian
Ĥ0, we take

Ĥ0 = − h̄2

2m
∇2 −

∑
σ

μσ (z)P̂σ + h̄wδ(z), (4)

where m is the effective electron mass (taken to be equal on
both sides of the interface), and

μσ (z) =
{

μHσ if z < 0,

μS if z > 0,
(5)

with σ =↑ , ↓ and the potentials μH↑, μH↓, and μS represent-
ing the combined effect of the chemical potential and band
offsets for the majority and minority electrons in the half metal
and for the superconductor, respectively, and where w sets the
strength of a δ-function potential barrier at the interface. The
operators

P̂↑ = 1
2 + 1

2 e3 · σ̂ , P̂↓ = 1
2 − 1

2 e3 · σ̂ (6)

project onto the majority and minority components, respec-
tively, where we have taken e3 to be the unit vector pointing
along the magnetization direction in the half metal.

The potentials μH↑, μH↓, and μS are such that μH↑,
μS > 0, and μH↓ < 0. As a result, majority states in the half
metal with uniform m(r) and states in the normal state of
the superconductor are propagating states, with Fermi wave
numbers

k↑ = 1

h̄

√
2mμH↑, kS = 1

h̄

√
2mμS, (7)

respectively. The corresponding Fermi velocities are
v↑ = h̄k↑/m and vS = h̄kS/m, respectively. Minority states
in the half metal are evanescent with wave-function decay rate

κ↓ = 1

h̄

√
2m|μH↓|. (8)

The Andreev approximation �0 � μS is used throughout our
calculation.

The propagation of electrons with Hamiltonian (1) is
described by the 4 × 4 matrix Green function G(ε; r,r′), which
is a solution of the Gorkov equation

(ε − H)G(ε; r,r′) = δ(r − r′). (9)

The Green function can be written

G(ε; r,r′) = 1

WxWy

∑
k‖

Gz(ε; k‖; z,z′)eik‖·(r‖−r′
‖), (10)

where k‖ = kxex + kyey is a wave vector parallel to the
superconductor interface and r‖ = xex + yey .35 The solution
of Eq. (9) then gives the result

Gz(ε; k‖; z,z′) = 1

ih̄
(U↑,U↓,V↑,V↓), (11)
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where the first two column vectors U↑ and U↓ have the form

U↑ = 1

v↑z

⎛
⎜⎜⎝

eik↑z(ε)|z−z′ | + ρ↑(ε)e−ik↑z(ε)(z+z′)

0
0

ρ↓(−ε)e−ik↑z(ε)z′+κ↓z(−ε)z

⎞
⎟⎟⎠ ,

(12)

U↓ = 1

iv↓z

⎛
⎜⎜⎝

0
e−κ↓z(ε)|z−z′ | + τ↓(ε)eκ↓z(ε)(z+z′)

τ↑(−ε)eik↑z(−ε)z+κ↓z(ε)z′

0

⎞
⎟⎟⎠ ,

for z, z′ < 0, whereas the latter two column vectors V↑ and
V↓ are obtained from U↑ and U↓, respectively, by particle-
hole conjugation (i.e., complex conjugation, interchange of
first and third rows, and of second and fourth rows, and the
replacements ε → −ε and k‖ → −k‖; see Appendix A). Here,

k↑z(ε) =
√

k2
↑ − k2

‖ + ε/h̄v↑z,
(13)

κ↓z(ε) =
√

κ2
↓ + k2

‖ − ε/h̄v↓z,

up to corrections of order ε2, with v↑z = h̄k↑z(0)/m and
v↓z = h̄k↓z(0)/m. The coefficient ρ↑(ε) is the amplitude for
normal reflection at the HS interface in the absence of the
perturbations; see Eq. (26) below. Since there is no Andreev
reflection in the absence of a magnetization gradient, one has
|ρ(ε)| = 1. The other coefficients do not have an interpretation
in terms of scattering amplitudes. Detailed expressions for the
coefficients ρσ and τσ can be found in Appendix A.

In the normal state (for �0 = 0), majority electrons inci-
dent onto the superconductor interface are transmitted with
probability

T↑(k‖) = 4v↑zvSz

4w2 + (v↑z + vSz)2
, (14)

where vSz = (h̄/m)(k2
S − k2

‖)1/2. The use of the step-function
model for the superconducting order parameter used in Eq. (1)
requires that the normal-state transparency of the HS interface
is small for majority electrons as well as minority electrons.34

In our model, this condition is met if

max(|w|,vS) 
 max(v↑,v↓), (15)

and we will assume that this inequality is met in the results
we present below. In our final results, we will eliminate w and
vS in favor of the normal-state reflection amplitude r and the
transmission coefficient T↑(k) given above. Expressions for
the case of an ideal interface with transparency T↑(k‖) = 1,
but still using the step-function model for �(r) at the interface,
are given in Appendix C.

B. Perturbation: Changing magnetization and impurities

The perturbation V describes the combined effect of a
magnetization direction that slowly changes as a function of
the coordinate z, as well as impurity scattering. We take the
magnetization direction to be10

m = (e1 cos ϕ + e2 sin ϕ) sin θ (r) + e3 cos θ (r), (16)

where the polar angle

θ (z) =
{

z/ld ifz < 0,

0 ifz � 0,
(17)

while the azimuthal angle ϕ remains constant. Transforming
to a spin coordinate system in which m points along e3

everywhere in space and expanding up to first order in the
gradient dθ/dz, one finds that the single-particle Hamiltonian
Ĥ takes the form Ĥ0 described in the previous section, with
the additional term36

V̂m = ih̄

2m
(σ2 cos ϕ − σ1 sin ϕ)

(
dθ

dz

∂

∂z
+ ∂

∂z

dθ

dz

)

= ih̄

mld
(σ2 cos ϕ − σ1 sin ϕ)

[
∂

∂z
− 1

2
δ(z)

]
. (18)

The impurity potential is taken to be a sum of the form

V̂i =
∑

j

uj δ(r − rj ), (19)

where rj is the position of the j th impurity and uj is its
strength. The impurity strength uj is related to the scattering
cross section σj for majority electrons,

σj = m2u2
j

πh̄4 . (20)

In the main text, we will consider the case in which the impu-
rities are randomly positioned with density nimp in the vicinity
of the interface. Here it is important to point out that nimp is
the impurity density at the interface, and that there may be a
different impurity density in the bulk of the half metal. (Our re-
sults below show that only impurities within a distance ∼1/κ↓
from the HS interface contribute to Andreev reflection. Hence,
only the impurity density near the interface enters in our final
expressions.) The situation in which all impurities are located
precisely at the interface is discussed separately in Appendix B.

Combining these two perturbations, we thus find

V =
(

V̂m + V̂i 0

0 −V̂ ∗
m − V̂ �

i

)
. (21)

C. Scattering matrix

There are two linearly independent solutions of the
Bogoliubov-de Gennes equation (1) for each wave vector
k‖. At a large distance from the HS interface (z � 0 for the
coordinate system used here), they can be taken to be of the
standard form

�εk‖e(r) = eik‖·r‖+ik↑z(ε)z√
v↑z(ε)WxWy

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

+
∑

k′
‖

eik′
‖·r‖−ik↑z(ε)z√

v↑z(ε)WxWy

⎛
⎜⎜⎝

ree(ε; k′
‖,k‖)

0
0
0

⎞
⎟⎟⎠

+
∑

k′
‖

eik′
‖·r‖−ik↑z(−ε)z√

v↑z(−ε)WxWy

⎛
⎜⎜⎝

0
0

rhe(ε; k′
‖,k‖)

0

⎞
⎟⎟⎠ , (22)
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and

�εk‖h(r) = eik‖·r‖−ik↑z(ε)z√
v↑z(−ε)WxWy

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

+
∑

k′
‖

eik′
‖·r‖−ik↑z(ε)z√

v↑z(ε)WxWy

⎛
⎜⎜⎝

reh(ε; k′
‖,k‖)

0
0
0

⎞
⎟⎟⎠

+
∑

k′
‖

eik′
‖·r‖+ik↑z(−ε)z√

v↑z(−ε)WxWy

⎛
⎜⎜⎝

0
0

rhh(ε; k′
‖,k‖)

0

⎞
⎟⎟⎠ , (23)

which represents a state with specified incoming electronlike
or holelike quasiparticle boundary conditions. Together, the
amplitudes ree, reh, rhe, and rhh define the scattering matrix S
of the HS interface,

S(k′
‖,k‖; ε) =

(
ree(k′

‖,k‖; ε) reh(k′
‖,k‖; ε)

rhe(k′
‖,k‖; ε) rhh(k′

‖,k‖; ε)

)
. (24)

The scattering matrix is unitary. Particle-hole symmetry gives
the further constraint10

ree(k′
‖,k‖,ε) = rhh(−k′

‖, − k‖, − ε)∗,
(25)

reh(k′
‖,k‖,ε) = rhe(−k′

‖, − k‖, − ε)∗.

In the absence of the perturbation V , S is found from a
solution of the Bogoliubov-de Gennes equation (1) with H =
H0,

S(k′
‖,k‖; ε) = δk′

‖,k‖

(
ρ↑(k‖; ε) 0

0 ρ↑(k‖, − ε)∗

)
. (26)

Inclusion of the term V leads to a shift S → S + δS of the
scattering matrix, which can be calculated perturbatively by
means of the Born series,

δrhe(k′
‖,k‖; ε) = 1

ih̄

∞∑
n=0

A〈ε,k′
‖,h|V (GV)n|ε,k‖,e〉R, (27)

and similar expressions for δree, δreh, and δrhh. Here the
retarded scattering states |ε,k‖,e〉R and |ε,k‖,h〉R are solutions
of the Bogoliubov-de Gennes equation (1) with H = H0 and
particlelike or holelike incoming boundary conditions, respec-
tively. The advanced scattering states |ε,k‖,e〉A and |ε,k‖,h〉A

are solutions of the same equation, but with particlelike or
holelike outgoing boundary conditions. Explicitly, the wave
function �R

ε,k‖,e(r) of the electronlike scattering retarded state
reads [compare Eqs. (22) and (26)]

�R
εk‖e(r) = eik‖·r‖√

v↑z(ε)WxWy

×

⎛
⎜⎝

eik↑z(ε)z + ρ↑(ε)e−ik↑z(ε)z

0
0

ρ↓(−ε)eκ↓z(−ε)z

⎞
⎟⎠ , (28)

whereas the wave function �ε,k‖,h(r) of the correspond-
ing holelike scattering state is obtained by particle-hole

conjugation,

�R
εk‖h(r) = eik‖·r‖√

v↑z(−ε)WxWy

×

⎛
⎜⎝

0
ρ↓(ε)∗eκ↓z(ε)z

e−ik↑z(−ε)z + ρ↑(−ε)∗eik↑z(−ε)z

0

⎞
⎟⎠ . (29)

The wave functions of the advanced scattering states are [recall
|ρ(k‖,ε)| = 1]

�A
εk‖e(r) = ρ↑(ε)∗�R

εk‖e(r),
(30)

�A
εk‖h(r) = ρ↑(−ε)�R

εk‖h(r).

Taken together, Eqs. (27)–(30) and the expressions (10)–(12)
for the Green function G contain all information relevant for
a calculation of the Andreev reflection amplitudes to arbitrary
order in the perturbation V .

III. ANDREEV REFLECTION AMPLITUDES

We now describe the calculation of the Andreev reflection
coefficients rhe(ε; k′

‖,k‖) and reh(ε; k′
‖,k‖) in the presence of

a magnetization gradient and impurity scattering at the HS
interface. All calculations are performed to first order in
the magnetization gradient (i.e., to first order in l−1

d ). This
approximation requires that ld is larger than the other relevant
length scales for the half metal (k−1

↑ , κ−1
↓ ), which is a condition

that is satisfied in realistic ferromagnets. Without impurity
scattering, one then finds Andreev reflection amplitudes that
are diagonal in the wave vectors k‖ and k′

‖ and linearly
proportional to the excitation energy ε. This calculation was
originally performed in Refs. 7 and 10 and the result is briefly
summarized in Sec. III A below. To first order in the impurity
potential, we find Andreev reflections that are off-diagonal
in k‖ and k′

‖. These amplitudes remain finite at ε = 0, but
vanish for k‖ = k′

‖. In order to find the leading contribution
to the diagonal amplitudes rhe(ε; k‖,k‖) and reh(ε; k‖,k‖), we
thus need to go to second order in the impurity potential. The
first-order and second-order calculations with respect to the
impurity potential are given in Secs. III B and III C, where
we restrict ourselves to the relevant cases ε = 0 and ε = 0,
k‖ = k′

‖, respectively.

A. No impurity potential

To first order in the perturbation V , only the magnetiza-
tion gradient term V̂m contributes to the Andreev reflection
amplitude. One finds10

rhe(ε; k′
‖,k‖) = δk‖,k′

‖
iεe−iφ+iϕ�0T↑(k‖)

4k↑zld

√
�2

0 − ε2

×
⎡
⎣ 8k↑z

h̄v↓z

(
κ2

↓z + k2
↑z

) + T↑(k‖)√
�2

0 − ε2

⎤
⎦ , (31)

in the limit of a low transmission T↑(k‖) of the half metal-
superconductor interface, where we kept the subleading term
proportional to T↑(k‖)2 because it appears with the (small)
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energy �0 in the denominator.37 [The divergence of Eq. (31)
for |ε| → �0 is an artifact of the small-T↑ expansion; Eqs. (31)
and (42) below are not valid for |ε| in the immediate vicinity
of �0.]

The essential feature of the Andreev reflection amplitude
(31) is that it vanishes at the Fermi level, ε = 0. As explained
in Sec. I, this is a consequence of the very special symmetries
of the Hamiltonian (1) in the absence of impurity scattering.
We now show by explicit calculation that impurity scattering,
in combination with the magnetization gradient, gives rise to
Andreev reflection into the half metal at zero energy.

B. First order in impurity potential

We now address the effect of impurities on the Andreev
reflection amplitudes. We first consider a single impurity
and postpone the discussion of the effect of a finite but
low concentration of impurities to Sec. III D. We choose our

coordinates such that the impurity is located at position ri =
(0,0,zi) with zi < 0. The corresponding impurity potential then
reads

Vi(r) = uiδ(x)δ(y)δ(z − zi). (32)

With this choice of coordinates, the normal and Andreev
reflection amplitudes are functions of the magnitudes k‖ and
k′
‖ of the initial-state and final-state wave vectors k‖ and k′

‖
and the angle between these vectors only. In particular, with
this impurity potential, π -rotation symmetry around the z axis
is restored,

S(ε; k′
‖,k‖) = S(ε; −k′

‖, − k‖). (33)

Evaluating the zero-energy Andreev reflection amplitude
rhe to first order in V̂m and first order in the impurity potential
V̂i of Eq. (32), we find a nonzero contribution to the Andreev
reflection amplitude at zero energy,

rhe(0; k′
‖,k‖) = 2iuie

−iφ+iϕ{eκ ′
↓zzik↑zT↑(k′

‖)[cos(k↑zzi) − eκ↓zzi ] − κ↓zT↑(k‖)eκ↓zzi sin(k′
↑zzi)}

h̄ldWxWy

(
κ2

↓z + k2
↑z

)√
v↑zv

′
↑z

− (k‖ ↔ k′
‖
)
, (34)

where, as before, we have given the result to leading order
in the transparency T↑ of the interface. [Unlike in the case of
Eq. (31), there are no terms of subleading order in T↑ that
come with small energy denominators.] The Andreev reflec-
tion amplitude rhe follows from the particle-hole symmetry
relations (25). The above result vanishes if the impurity is
located precisely at the superconductor interface. In that case,
the leading contribution to the Andreev reflection amplitude
is of higher order in the interface transparency. We have listed
the corresponding expressions in Appendix B.

The Andreev reflection amplitude (34) is odd under ex-
change of the initial and final momenta k‖ and k′

‖. In particular,
rhe(0; k′

‖,k‖) vanishes for k‖ = k′
‖. This can be seen from the

following simple argument: For the calculation of the diagonal
elements rhe(0; k‖,k‖) to first order in Vm and Vi, there is no
difference between an impurity potential of the form (32) and
a potential that is invariant under translations parallel to the
superconductor interface, Vi(r) = (WxWy)−1uiδ(z − zi). For
the latter potential, the general arguments of Ref. 10 apply,
from which it follows that rhe(0; k‖,k‖) = 0.

Note that only impurities within a distance ∼1/κ↓ of
the minority-electron wave-function decay length from the
interface contribute to the Andreev reflection amplitude rhe.
This is consistent with the picture that the Andreev reflec-
tion process involves an intermediate (evanescent) minority-
electron state, which is then converted into a majority state via
a spin-flip process enabled by the combination of the impurity
scattering and the magnetization gradient. Impurities at a larger
distance from the superconductor interface do not contribute to
the Andreev reflection amplitude. Their contribution to observ-
able quantities, such as the conductance of an HS junction or

the Josephson current in an SHS junction, can be calculated
using standard approaches; see, e.g., Ref. 33.

C. Second order in impurity potential

A nonzero contribution to the diagonal amplitudes
reh(0; k‖,k‖) can be expected in second-order perturbation
theory in the impurity potential Vi. Technically, it is most
convenient to calculate the diagonal amplitudes reh(0; k‖,k‖)
from the leading order (first order in Vi) results for the
off-diagonal amplitudes reh(0; k′

‖,k‖) of Eq. (34) and the first-
order-in-Vi off-diagonal normal reflection amplitudes using
the relation

rhe(0; k‖,k‖) = −
∑

k′
‖ �=k‖

ree(0; k‖,k′
‖)rhe(0; k‖,k′

‖)

ree(0; k‖,k‖)
, (35)

which is obtained upon combining unitarity of the scattering
matrix, the particle-hole symmetry relations (25), and the
symmetry relations (33). For the off-diagonal normal reflection
amplitude ree(0; k′

‖,k‖), we find

ree(0; k′
‖,k‖) = 4iui sin(k↑zzi) sin(k′

↑zzi)

h̄WxWy

√
v↑zv

′
↑z

, (36)

to leading (zeroth) order in the interface transparency. To lead-
ing order in the interface transparency, the diagonal normal re-
flection coefficient ree(0; k‖,k‖) = −1. Because rhe(0; k‖,k′

‖)
vanishes for |k‖| = |k′

‖|, the summation in Eq. (35) is domi-
nated by terms in which |k‖| − |k′

‖| ∼ k↑. The expression for
the diagonal second-order-in-Vi Andreev reflection amplitude
that we find upon substituting Eqs. (34) and (36) into
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Eq. (35) is too lengthy to be reported in full, but the result takes
a simple form in the limit v↑ � min(v↓,vS) � max(|w|,vS),
corresponding to a large mismatch of Fermi velocities in H
and S,

rhe(0; k‖,k‖) = 2u2
i e

−i(φ−ϕ)+κ↓ziz2
i k

3
↑
(
5k2

↑z − 3k2
↑
)
T↑(k‖)

45h̄2WxWyκ
2
↓v2

↓ldπ

× [6(1−eκ↓zi )−6κ↓zi + 3(κ↓zi)
2 + (κ↓zi)

3].

(37)

Equation (37) is valid for arbitrary impurity locations ri. Only
impurities within a distance ∼1/κ↓ contribute to the Andreev
reflection amplitude of Eq. (37). Note that the first-order
amplitude (34) and the second-order amplitude (37) are both
proportional to the same power of the interface transparency
T↑(k‖).

D. Finite density of impurities

We now consider a finite but low density nimp of impurities
in the immediate vicinity of the surface, for which the potential
strength uj is itself a random variable with zero mean and with
variance 〈u2

j 〉. In view of the applications of the next section,
we are interested in the ensemble averages 〈rhe(0; k′

‖,k‖)〉 and
〈|rhe(0; k′

‖,k‖)|2〉 with respect to the disorder at the interface, to
lowest (first) order in nimp. The single-impurity results derived
above are sufficient for this calculation, since interference
effects between Andreev reflection processes that are enabled
by scattering off different impurities can be neglected to this
order in the impurity density nimp. (They give a contribution
proportional to n2

imp.)
Thus proceeding, we find that the average reflection

amplitude 〈rhe(0; k′
‖,k‖)〉 is nonzero only if k′

‖ = k‖ (because
translation invariance along the interface is restored upon
taking the ensemble average),

〈rhe(0; k‖,k‖)〉 = −δk′
‖,k‖e

−i(φ−ϕ)nimp〈σ 〉T↑(k‖)

× k3
↑
(
5k2

↑z − 3k2
↑
)

15κ7
↓ld

, (38)

where 〈σ 〉 = m2〈u2
j 〉/πh̄4 is the mean scattering cross section

of the impurities; see Eq. (20). The mean-square Andreev
reflection amplitude is

〈|rhe(0; k′
‖,k‖)|2〉 = nimp〈σ 〉T↑(k′

‖)T↑(k‖)

× 2185π
(
k2
↑z − k′2

↑z

)2
648κ9

↓l2
dWxWy

. (39)

Both results are for the limit v↑ � min(v↓,vS) �
max(|w|,vS).

It is an interesting question as to what the effect of impuri-
ties is on the symmetry of the superconducting correlations in
the half metal. In the quasiclassical Green function approach,
the spin-triplet superconducting correlations in the half metal
are described with the help of the anomalous Green function
f (i�; k,r), where � is the Matsubara frequency, which is

related to the Andreev reflection amplitudes as10

f (i�; k,r) = 2e−2|�|(r·ez)/h̄v↑z

×
⎧⎨
⎩

reh(i�; k‖,k‖), kz < 0, � > 0,
−rhe(−i�; k‖,k‖)∗, kz > 0, � < 0,

0 otherwise,

(40)

where k is a wave vector with k = k↑. Without impurities at
the interface, one thus finds that the spin-active interface gives
rise to correlations of predominantly odd-frequency s-wave
type, with an anomalous Green function f ∝ � for small
frequencies.10,28 We find from Eqs. (38) and (40) that the
presence of impurities at the interface does not change this
fundamental symmetry of the induced superconducting order,
but it does change the asymptotic low-frequency dependence
of f , where f is proportional to sign (�) for small �.
This enhancement of odd-frequency s-wave superconducting
correlations at small frequencies is a unique signature of the
impurity-assisted spin-triplet proximity effect in half metals.

IV. APPLICATIONS

A. Conductance

The conductance of a half metal-superconductor interface
is given by the expression33,38

G(V ) = 2e2

h

∑
k‖,k′

‖

|rhe(ε = eV ; k′
‖,k‖)|2. (41)

Without impurities, rhe is given by Eq. (31) if there is a
magnetization gradient perpendicular to the interface, and G

is proportional to V 2 at low voltage,7,10

G(V ) = e2(eV )2WxWy�
2
0T↑(0)2

2π2h̄l2
d

[
�2

0 − (eV )2
]
{

k2
↑

h̄2v2
↓κ4

↓

+ k↑T↑(0)

4h̄v↓κ2
↓
√

�2
0 − (eV )2

+ T↑(0)2

64
[
�2

0 − (eV )2
]
⎫⎬
⎭ ,

(42)

where T↑(0) is the normal-state transmission coefficient of
the clean HS interface for perpendicular incidence (k‖ = 0),
and we took the limit v↑ � min(v↓,vS) � max(|w|,vS).
Equation (42) and the other equations in this section and in
Appendix C are valid to leading order in the magnetization
gradient l−1

d .
For low bias, an impurity at position ri = ziez increases the

conductance by a finite amount, which is found by substituting
Eq. (34) into Eq. (41). Because of space limitations, we
here report the resulting expression for the limit v↑ �
min(v↓,vS) � max(|w|,vS) only,

δG = 2e2σiT
2
↑ (0)k8

↑
4725π2h̄l2

dκ
8
↓
e2κ↓zi

× [6 − 6eκ↓zi − 6κ↓zi + 3(κ↓zi)
2 + (κ↓zi)

3]2, (43)

where σi is the scattering cross section of the impurity; see
Eq. (20). For a finite but small concentration nimp of impu-
rities near the superconductor interface, one may add these
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contributions to the conductance, giving a finite conductance at
zero bias,

G(0) = 437e2nimp〈σ 〉WxWyT↑(0)2k8
↑

34020π2h̄κ9
↓l2

d

, (44)

where 〈σ 〉 is the mean scattering cross section of the impurities.
At finite bias, the conductance is the sum of Eqs. (42) and (44).

The impurity-assisted contribution to the conductance (44)
dominates over the conductance (42) of a clean HS interface
in the limit of low-bias voltages,(

eV

|μH↓|
)2

� nimp〈σ 〉
κ↓

(
k↑
κ↓

)6

, (45)

where μH↓ = −h̄κ↓v↓/2 is the excitation gap for minority
quasiparticles in the half metal; see Eq. (8). This condition
is independent of the normal-state transmission coefficient
T↑(0) and the magnetization gradient l−1

d , since the interface
conductance G is proportional to T↑(0)2l−2

d for a clean
interface as well as for an interface with impurity scattering.
[Here we took the first term in Eq. (42) as the basis for
our comparison, which is the leading contribution to the
conductance of a clean interface in the limit of a small interface
transparency T↑(0).] The fraction on the left-hand side of
Eq. (45) is the total cross section of all impurities within a
layer of width 1/κ↓ adjacent to the HS interface, per unit
interface area.

B. Josephson current

Next, we consider a superconductor-half metal-
superconductor junction, in which the central half-metallic
segment is clean, with the possible exception of the presence
of impurities with density nimp near the two interfaces.
We choose coordinates such that the two interfaces are at
z = −L and z = 0; see Fig. 2. We consider the case that the
magnetization gradient is perpendicular to the superconductor
interface at both interfaces, with equal azimuthal angles ϕ,
and that the magnetization gradients are equal in magnitude
and opposite in direction. We restrict our analysis to the
so-called long-junction limit EL � �0, where

EL = h̄v↑
2πL

(46)

is the Thouless energy of the junction, and we consider tem-
peratures in the range EL � kBT � �0. In this temperature

FIG. 2. SHS junction of length L with two spin-active interfaces.

regime, the Josephson current is quadratic in the Andreev
reflection amplitudes,39

I = −4ekBT

h̄

d

dφ

∑
k‖,k′

‖

e−πkBT L/h̄v↑z−πkBT L/h̄v′
↑z

× Re reh(iπkBT ; k‖,k′
‖)r̃he(iπkBT ; k′

‖,k‖), (47)

where kB is the Boltzmann constant, T is the temperature, and
φ is the phase difference between the two superconductors.
The amplitudes reh and r̃he describe Andreev reflection at the
interfaces at z = 0 and z = −L, respectively.

Each Andreev reflection amplitude that appears in Eq. (47)
is the sum of two contributions: a contribution for the clean
half metal-superconductor interface, given in Eq. (31), and
a contribution from impurity-mediated Andreev reflection.
Upon taking the average over the ensemble of impurities, the
impurity-mediated contribution’s two factors reh and r̃he can be
averaged separately, as they refer to two different interfaces.
After taking the ensemble average, translation symmetry
along the interface is restored, and the ensemble-averaged
amplitudes 〈reh(iπkBT ; k′

‖,k‖)〉 and 〈r̃he(iπkBT ; k′
‖,k‖)〉 are

zero except if k‖ = k′
‖; see Eq. (38). We then find, again in the

limit v↑ � min(v↓,vS) � max(|w|,vS), that

I = −eπWxWyT↑(0)2EL

1800h̄l2
d

e−kBT/EL sin φ

×
(

15kBT T↑(0)

�0
+ 120kBT k↑

h̄v↓κ2
↓

− 8k6
↑〈σ 〉nimp

πκ7
↓

)2

.

(48)

Upon lowering the temperature, Eq. (48) remains valid as
long as kBT � EL, and the Josephson current saturates for
temperatures kBT ∼ EL.

Comparing the Josephson current for a clean interface and
the impurity-assisted contribution, we find that the impurity-
assisted contribution dominates if

nimp〈σ 〉
κ↓

(
k↑
κ↓

)5

� max(kBT ,EL)

|μH↓| , (49)

where we again took the current in the clean case in the
limit of a low transparency of the HS interface. Again, this
condition is independent of T↑ and ld, because the dependence
of the Josephson current on these parameters is the same
(proportional to T 2

↑ l−2
d ) for clean and dirty interfaces.

V. CONCLUSION

We have verified through explicit calculation that
impurities in the vicinity of a half metal-superconductor
(HS) junction with a magnetization gradient perpendicular
to the interface (spin-active interface) qualitatively change
the dependence of the Andreev reflection amplitude rhe on
the quasiparticle energy ε and, hence, the bias dependence
of the interface conductance G and the temperature
dependence of the Josephson current I of a superconductor-
half metal-superconductor (SHS) junction. Without impurities,
one has rhe ∝ ε at low energy.7 In contrast, impurities give rise
to a nonzero value of rhe for ε = 0. Interestingly, the zero-bias
conductance of a HS junction and the low-temperature
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Josephson current of an SHS junction increase upon
increasing the impurity concentration at the interface.

Although it was to be expected, based on general symmetry
considerations, that impurity scattering leads to a nonzero
Andreev reflection probability |rhe|2, we found the remarkable
result that a nonzero amplitude 〈rhe〉 remains after taking
an average over impurity locations and potentials. It is
this coherent impurity-assisted Andreev reflection that is
responsible for the increase in the low-temperature Josephson
current and the superconducting correlations at low frequency
that we predict. The nonzero average persists if an average
over the Fermi surface is performed.

There is an important difference between the impurities in
the immediate vicinity of the interface we considered here,
and impurities at a larger distance into the half metal. Only
impurities in the half metal that are within a minority-electron
wave-function decay length from the interface may enhance
Andreev reflection. Within a quasiclassical approach, such
impurities are considered as part of the interface, and they
are an integral part of the boundary conditions that have to be
applied at the half metal-superconductor interface. Impurities
that are located farther into the half metal lead to scattering
of quasiparticles before and after Andreev reflection, but such
impurities are not involved in the Andreev reflection process
itself. Their effect can be treated with standard methods
from quasiclassics or the scattering matrix approach, which
combine normal-state propagation inside the half metal with
the Andreev reflection boundary conditions at the half metal-
superconductor interface.33,40 In any case, since the induced
superconducting order is of the s-wave type for both clean and

disordered spin-active interfaces, impurities away from the
interface will only have a minor effect on the superconducting
order induced in the half metal.
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APPENDIX A: SCATTERING STATES

The full expression for the column vectors V↑ and V↓
appearing in the Green function Gz is

V↑ = 1

h̄v↑z

⎛
⎜⎜⎝

0
ρ↓(ε)∗eik↑z(−ε)z′+κz(ε)z

e−ik↑z(−ε)|z − z′| + ρ↑(−ε)∗eik↑z(−ε)(z+z′)

0

⎞
⎟⎟⎠ , (A1)

V↓ = 1

(−i)h̄v↓z

⎛
⎜⎜⎝

τ↑(ε)∗e−ik↑z(ε)z+κz(−ε)z′

0
0

e−κz(−ε)|z − z′| + τ↓(−ε)∗eκz(−ε)(z+z′)

⎞
⎟⎟⎠. (A2)

The detailed expressions for the coefficients ρσ and τσ of
Eq. (12) are

ρ↑(ε) =
−vSz(v↓z − iv↑z)ε + [v2

Sz + (v↓z + 2w)(iv↑z + 2w)
]√

�2
0 − ε2

vSz(v↓z + iv↑z)ε − [v2
Sz + (v↓z + 2w)(−iv↑z + 2w)

]√
�2

0 − ε2
, (A3)

ρ↓(ε) = − 2ie−iφvSzv↑z�0

vSz(v↓z + iv↑z)ε + [v2
Sz + (v↓z + 2w)(−iv↑z + 2w)

]√
�2

0 − ε2
, (A4)

τ↓(ε) =
vSz(v↓z + iv↑z)ε − [v2

Sz − (v↓z − 2w)(iv↑z + 2w)
]√

�2
0 − ε2

vSz(v↓z − iv↑z)ε + [v2
Sz + (v↓z + 2w)(iv↑z + 2w)

]√
�2

0 − ε2
, (A5)

τ↑(ε) = 2e−iφv↓zvSz�0

vSz(v↓z − iv↑z)ε − [v2
Sz + (v↓z + 2w)(iv↑z + 2w)

]√
�2

0 − ε2
. (A6)

APPENDIX B: IMPURITIES PRECISELY AT
THE HS INTERFACE

If all impurities are located precisely at the HS interface
(i.e., zi = 0 for all impurities), then the impurity-assisted
Andreev reflection amplitude vanishes to the order in the
interface transparency that was required to derive Eqs. (34)

and (37) of the main text. In this Appendix, we collect the
main results of this article for the case zi = 0.

For impurities located at the HS interface, it is not possible
to eliminate the parameters w and vSz in favor of the
normal-state transmission T↑(k‖) of the HS interface only. In
addition, we need the imaginary part Im r↑(k‖) of the reflection
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amplitude for majority electrons incident on the HS interface from the half metal,

r↑(k‖) = −2iw − vSz + v↑z

2iw + vSz + v↑z

. (B1)

The transmission probability T (k‖) for majority electrons incident at the half metal-superconductor interface with the
superconductor in the normal state is T↑(k) = 1 − |r↑(k‖)|2.

For the first-order-in-V̂i contribution to the Andreev reflection amplitude, one then finds

rhe(0; k′
‖,k‖) = iuie

−iφ+iϕκ ′
↓z[T↑(k′

‖)Im r↑(k‖) + T↑(k‖)Im r↑(k′
‖)]

h̄ldWxWy

(
κ ′2

↓z + k′2
↑z

)√
v↑zv

′
↑z

− (k‖ ↔ k′
‖), (B2)

to leading order in the interface transparency. The normal reflection amplitude is, again to first order in the impurity potential
and to leading order in the interface transparency,

ree(0; k′
‖,k‖) = − iui[T↑(k‖)T↑(k′

‖) − 4Im r↑(k‖)Im r↑(k′
‖)]

4h̄WxWy

√
v↑zv

′
↑z

. (B3)

For the second-order-in-Vi diagonal Andreev reflection amplitude, one finds

rhe(0; k‖,k‖) = u2
i e

−i(φ−ϕ)k3
↑[Im r↑(k‖)]T↑(k‖){T↑(k‖)2 − 4[Im r↑(k‖)]2}(5k2

↑z − 3k2
↑
)

60WxWyh̄
2κ↓v2

↓ldπk3
↑z

, (B4)

where we took the limit v↑ � min(v↓,vS) � max(|w|,vS). In the same limit, one finds that a single impurity at the HS interface
increases the zero-bias conductance of a HS junction by the amount

δG = 8e2〈σ 〉T↑(0)2[Im r↑(0)]2k6
↑

525π2h̄κ6
↓l2

d

. (B5)

Finally, for impurities located precisely at the superconductor interface with surface density nimp,2d, we find the Josephson current

I = −eπWxWyT↑(0)2EL

1800h̄l2
d

e−kBT/EL sin(φ)

×
(

15kBT T↑(0)

�0
+ 120kBT k↑

h̄v↓κ2
↓

− 2k3
↑〈σ 〉nimp,2d[Im r↑(0)]{T↑(0)2 − 4[Im r↑(0)]2}

πκ3
↓

)2

. (B6)

APPENDIX C: IDEAL INTERFACE

Here, we analyze the case of an ideal half metal-superconductor interface with perfect transmission, keeping the (non-self-
consistent) step-function model for the order parameter �(r). Perfect transparency T↑(k‖) = 1 at the NS interface is achieved by
setting w = 0 and vS = v↑. In analogy to Eq. (34), the leading contribution to the impurity-assisted Andreev reflection amplitude,

rhe(0; k′
‖,k‖) = −4iuie

−iφ+iϕ

ldh̄WxWy

(
k2
↑z + κ2

↓z

)
(k↑z + iκ↓z)(k′

↑z − iκ ′
↓z)
√

v′
↑zv↑z

[{− 2eκ ′
↓zzik′

↑zk↑z[k↑z cos(k↑zzi) + κ↓z sin(k↑zzi)]

+ 2eκ↓zzik↑zκ↓z[k
′
↑z sin(k′

↑zzi) − κ ′
↓z cos(k′

↑zzi)] − eκ↓zzi+κ ′
↓zzik′

↑z

(
κ2

↓z − 3k2
↑z

)}− (k‖ ↔ k′
‖)
]
, (C1)

vanishes for k‖ = k′
‖. For the first-order-in-Vi normal reflection amplitude, we find, in analogy to Eq. (36),

ree(0; k′
‖,k‖) = −4iuie

iφ−iϕ
{
k↑zk

′
↑ze

x(κ↓z+κ ′
↓z) − [κ↓z cos(xk↑z) − k↑z sin(xk↑z)][κ ′

↓z cos(xk′
↑z) − k′

↑z sin(xk′
↑z)]
}

h̄WxWy

√
v↑zv

′
↑z(k↑z − iκ↓z)(k′

↑z − iκ ′
↓z)

. (C2)

The remaining results in this appendix are for the limit vS = v↑ � v↓, corresponding to a large mismatch of the (minority) Fermi
velocities in the half metal and the superconductor. For the diagonal contribution to rhe, we then find

rhe(0; k‖,k‖) = 4u2
i e

−iφ+iϕ

h̄2WxWyldk↑z

k↑(k↑ − 2k↑z)

πv2
↓

eziκ↓z (2 − eziκ↓z ). (C3)
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Taking the average in impurity position in the half metal (38)
leads us to

〈rhe(0; k‖,k‖)〉 = 6〈σ 〉nimpe
−iφ+iϕk↑(k↑ − 2k↑z)

ldκ
3
↓k↑z

. (C4)

As described in Sec. IV A, we calculate the leading correction
to the subgap conductance caused by a single impurity in the
half metal,

δG = 2e2

h

2σi

πl2
d

e2κ↓zzi
(eκ↓zzi − 2)2

3

k4
↑

κ4
↑z

, (C5)

and find, after taking the average in impurity position,

G(0) = 2e2

h

11〈σ 〉nimpWxWy

18πl2
d

k4
↑

κ5
↑z

. (C6)

Finally, for the impurity-assisted Josephson current in the long-
junction limit for high temperatures, EL � kBT � �0, we
find

I = 16e v↑
L

WxWyk
2
↑

4π2

(
1

k↑ld

)2

× k4
↑

κ4
↓

[sin(φ)](e−kBT/EL )

(
2πkBT

�0
− 3nimp〈σ 〉

κ↓

)2

. (C7)
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